Unary Integer Linear Programming with Structural Restrictions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10387259" target="_blank" >RIV/00216208:11320/18:10387259 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14330/18:00106814
Výsledek na webu
<a href="https://doi.org/10.24963/ijcai.2018/179" target="_blank" >https://doi.org/10.24963/ijcai.2018/179</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24963/ijcai.2018/179" target="_blank" >10.24963/ijcai.2018/179</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unary Integer Linear Programming with Structural Restrictions
Popis výsledku v původním jazyce
Recently a number of algorithmic results have appeared which show the tractability of Integer Linear Programming (ILP) instances under strong restrictions on variable domains and/or coefficients (AAAI 2016, AAAI 2017, IJCAI 2017). In this paper, we target ILPs where neither the variable domains nor the coefficients are restricted by a fixed constant or parameter; instead, we only require that our instances can be encoded in unary. We provide new algorithms and lower bounds for such ILPs by exploiting the structure of their variable interactions, represented as a graph. Our first set of results focuses on solving ILP instances through the use of a graph parameter called clique-width, which can be seen as an extension of treewidth which also captures well-structured dense graphs. In particular, we obtain a polynomial-time algorithm for instances of bounded clique-width whose domain and coefficients are polynomially bounded by the input size, and we complement this positive result by a number of algorithmic lower bounds. Afterwards, we turn our attention to ILPs with acyclic variable interactions. In this setting, we obtain a complexity map for the problem with respect to the graph representation used and restrictions on the encoding.
Název v anglickém jazyce
Unary Integer Linear Programming with Structural Restrictions
Popis výsledku anglicky
Recently a number of algorithmic results have appeared which show the tractability of Integer Linear Programming (ILP) instances under strong restrictions on variable domains and/or coefficients (AAAI 2016, AAAI 2017, IJCAI 2017). In this paper, we target ILPs where neither the variable domains nor the coefficients are restricted by a fixed constant or parameter; instead, we only require that our instances can be encoded in unary. We provide new algorithms and lower bounds for such ILPs by exploiting the structure of their variable interactions, represented as a graph. Our first set of results focuses on solving ILP instances through the use of a graph parameter called clique-width, which can be seen as an extension of treewidth which also captures well-structured dense graphs. In particular, we obtain a polynomial-time algorithm for instances of bounded clique-width whose domain and coefficients are polynomially bounded by the input size, and we complement this positive result by a number of algorithmic lower bounds. Afterwards, we turn our attention to ILPs with acyclic variable interactions. In this setting, we obtain a complexity map for the problem with respect to the graph representation used and restrictions on the encoding.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence
ISBN
978-0-9992411-2-7
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
7
Strana od-do
1284-1290
Název nakladatele
International Joint Conferences on Artificial Intelligence
Místo vydání
Neuveden
Místo konání akce
Stockholm
Datum konání akce
13. 7. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—