Baselines for Reinforcement Learning in Text Games
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10387543" target="_blank" >RIV/00216208:11320/18:10387543 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ICTAI.2018.00058" target="_blank" >http://dx.doi.org/10.1109/ICTAI.2018.00058</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICTAI.2018.00058" target="_blank" >10.1109/ICTAI.2018.00058</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Baselines for Reinforcement Learning in Text Games
Popis výsledku v původním jazyce
The ability to learn optimal control policies in systems where action space is defined by sentences in natural language would allow many interesting real-world applications such as automatic optimisation of dialogue systems. Text-based games with multiple endings and rewards are a promising platform for this task, since their feedback allows us to employ reinforcement learning techniques to jointly learn text representations and control policies. We argue that the key property of AI agents, especially in the text-games context, is their ability to generalise to previously unseen games. We present a minimalistic text-game playing agent, testing its generalisation and transfer learning performance and showing its ability to play multiple games at once. We also present pyfiction, an open-source library for universal access to different text games that could, together with our agent that implements its interface, serve as a baseline for future research.
Název v anglickém jazyce
Baselines for Reinforcement Learning in Text Games
Popis výsledku anglicky
The ability to learn optimal control policies in systems where action space is defined by sentences in natural language would allow many interesting real-world applications such as automatic optimisation of dialogue systems. Text-based games with multiple endings and rewards are a promising platform for this task, since their feedback allows us to employ reinforcement learning techniques to jointly learn text representations and control policies. We argue that the key property of AI agents, especially in the text-games context, is their ability to generalise to previously unseen games. We present a minimalistic text-game playing agent, testing its generalisation and transfer learning performance and showing its ability to play multiple games at once. We also present pyfiction, an open-source library for universal access to different text games that could, together with our agent that implements its interface, serve as a baseline for future research.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ17-17125Y" target="_blank" >GJ17-17125Y: Balancování deliberativního a reaktivního chování inteligentních agentů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of ICTAI 2018 : International Conference on Tools with Artificial Intelligence
ISBN
978-1-5386-7449-9
ISSN
1082-3409
e-ISSN
neuvedeno
Počet stran výsledku
8
Strana od-do
320-327
Název nakladatele
IEEE
Místo vydání
Volos, Greece
Místo konání akce
Volos,Greece
Datum konání akce
5. 11. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000457750200048