Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Learning Dynamic Belief Graphs to Generalize on Text-Based Games

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10432150" target="_blank" >RIV/00216208:11320/20:10432150 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://proceedings.neurips.cc/paper/2020/hash/1fc30b9d4319760b04fab735fbfed9a9-Abstract.html" target="_blank" >https://proceedings.neurips.cc/paper/2020/hash/1fc30b9d4319760b04fab735fbfed9a9-Abstract.html</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Learning Dynamic Belief Graphs to Generalize on Text-Based Games

  • Popis výsledku v původním jazyce

    Playing text-based games requires skills in processing natural language and sequential decision making. Achieving human-level performance on text-based games remains an open challenge, and prior research has largely relied on hand-crafted structured representations and heuristics. In this work, we investigate how an agent can plan and generalize in text-based games using graph-structured representations learned end-to-end from raw text. We propose a novel graph-aided transformer agent (GATA) that infers and updates latent belief graphs during planning to enable effective action selection by capturing the underlying game dynamics. GATA is trained using a combination of reinforcement and self-supervised learning. Our work demonstrates that the learned graph-based representations help agents converge to better policies than their text-only counterparts and facilitate effective generalization across game configurations. Experiments on 500+ unique games from the TextWorld suite show that our best agent outperforms text-based baselines by an average of 24.2%.

  • Název v anglickém jazyce

    Learning Dynamic Belief Graphs to Generalize on Text-Based Games

  • Popis výsledku anglicky

    Playing text-based games requires skills in processing natural language and sequential decision making. Achieving human-level performance on text-based games remains an open challenge, and prior research has largely relied on hand-crafted structured representations and heuristics. In this work, we investigate how an agent can plan and generalize in text-based games using graph-structured representations learned end-to-end from raw text. We propose a novel graph-aided transformer agent (GATA) that infers and updates latent belief graphs during planning to enable effective action selection by capturing the underlying game dynamics. GATA is trained using a combination of reinforcement and self-supervised learning. Our work demonstrates that the learned graph-based representations help agents converge to better policies than their text-only counterparts and facilitate effective generalization across game configurations. Experiments on 500+ unique games from the TextWorld suite show that our best agent outperforms text-based baselines by an average of 24.2%.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Advances in Neural Information Processing Systems 33

  • ISBN

    978-1-71382-954-6

  • ISSN

    1049-5258

  • e-ISSN

  • Počet stran výsledku

    13

  • Strana od-do

    3045-3057

  • Název nakladatele

    Curran Associates, Inc.

  • Místo vydání

    Neuveden

  • Místo konání akce

    Virtuální

  • Datum konání akce

    6. 12. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku