Stability of the ale space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10387924" target="_blank" >RIV/00216208:11320/18:10387924 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1051/m2an/2018062" target="_blank" >https://doi.org/10.1051/m2an/2018062</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/m2an/2018062" target="_blank" >10.1051/m2an/2018062</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stability of the ale space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains
Popis výsledku v původním jazyce
The paper is concerned with the analysis of the space-time discontinuous Galerkin method (STDGM) applied to the numerical solution of nonstationary nonlinear convection-diffusion initial- boundary value problem in a time-dependent domain. The problem is reformulated using the arbitrary Lagrangian{Eulerian (ALE) method, which replaces the classical partial time derivative by the so-called ALE derivative and an additional convective term. The problem is discretized with the use of the ALE- space time discontinuous Galerkin method (ALE-STDGM). In the formulation of the numerical scheme we use the nonsymmetric, symmetric and incomplete versions of the space discretization of diusion terms and interior and boundary penalty. The nonlinear convection terms are discretized with the aid of a numerical flux. The main attention is paid to the proof of the unconditional stability of the method. An important step is the generalization of a discrete characteristic function associated with the approximate solution and the derivation of its properties.
Název v anglickém jazyce
Stability of the ale space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains
Popis výsledku anglicky
The paper is concerned with the analysis of the space-time discontinuous Galerkin method (STDGM) applied to the numerical solution of nonstationary nonlinear convection-diffusion initial- boundary value problem in a time-dependent domain. The problem is reformulated using the arbitrary Lagrangian{Eulerian (ALE) method, which replaces the classical partial time derivative by the so-called ALE derivative and an additional convective term. The problem is discretized with the use of the ALE- space time discontinuous Galerkin method (ALE-STDGM). In the formulation of the numerical scheme we use the nonsymmetric, symmetric and incomplete versions of the space discretization of diusion terms and interior and boundary penalty. The nonlinear convection terms are discretized with the aid of a numerical flux. The main attention is paid to the proof of the unconditional stability of the method. An important step is the generalization of a discrete characteristic function associated with the approximate solution and the derivation of its properties.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-01747S" target="_blank" >GA17-01747S: Teorie a numerická analýza sdružených problémů dynamiky tekutin</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Modelling and Numerical Analysis
ISSN
0764-583X
e-ISSN
—
Svazek periodika
2018
Číslo periodika v rámci svazku
52
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
30
Strana od-do
2327-2356
Kód UT WoS článku
000457984700008
EID výsledku v databázi Scopus
2-s2.0-85061057643