Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A copula approach for dependence modeling in multivariate nonparametric time series

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10400942" target="_blank" >RIV/00216208:11320/19:10400942 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.KDVrfGk8c" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.KDVrfGk8c</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmva.2018.11.016" target="_blank" >10.1016/j.jmva.2018.11.016</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A copula approach for dependence modeling in multivariate nonparametric time series

  • Popis výsledku v původním jazyce

    This paper is concerned with modeling the dependence structure of two (or more) time series in the presence of a (possibly multivariate) covariate which may include past values of the time series. We assume that the covariate influences only the conditional mean and the conditional variance of each of the time series but the distribution of the standardized innovations is not influenced by the covariate and is stable in time. The joint distribution of the time series is then determined by the conditional means, the conditional variances and the marginal distributions of the innovations, which we estimate nonparametrically, and the copula of the innovations, which represents the dependency structure. We consider a nonparametric and a semi parametric estimator based on the estimated residuals. We show that under suitable assumptions, these copula estimators are asymptotically equivalent to estimators that would be based on the unobserved innovations. The theoretical results are illustrated by simulations and a real data example. (C) 2018 Elsevier Inc. All rights reserved.

  • Název v anglickém jazyce

    A copula approach for dependence modeling in multivariate nonparametric time series

  • Popis výsledku anglicky

    This paper is concerned with modeling the dependence structure of two (or more) time series in the presence of a (possibly multivariate) covariate which may include past values of the time series. We assume that the covariate influences only the conditional mean and the conditional variance of each of the time series but the distribution of the standardized innovations is not influenced by the covariate and is stable in time. The joint distribution of the time series is then determined by the conditional means, the conditional variances and the marginal distributions of the innovations, which we estimate nonparametrically, and the copula of the innovations, which represents the dependency structure. We consider a nonparametric and a semi parametric estimator based on the estimated residuals. We show that under suitable assumptions, these copula estimators are asymptotically equivalent to estimators that would be based on the unobserved innovations. The theoretical results are illustrated by simulations and a real data example. (C) 2018 Elsevier Inc. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Multivariate Analysis

  • ISSN

    0047-259X

  • e-ISSN

  • Svazek periodika

    171

  • Číslo periodika v rámci svazku

    May

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    24

  • Strana od-do

    139-162

  • Kód UT WoS článku

    000463305300010

  • EID výsledku v databázi Scopus

    2-s2.0-85058466309