A copula approach for dependence modeling in multivariate nonparametric time series
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10400942" target="_blank" >RIV/00216208:11320/19:10400942 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.KDVrfGk8c" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.KDVrfGk8c</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmva.2018.11.016" target="_blank" >10.1016/j.jmva.2018.11.016</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A copula approach for dependence modeling in multivariate nonparametric time series
Popis výsledku v původním jazyce
This paper is concerned with modeling the dependence structure of two (or more) time series in the presence of a (possibly multivariate) covariate which may include past values of the time series. We assume that the covariate influences only the conditional mean and the conditional variance of each of the time series but the distribution of the standardized innovations is not influenced by the covariate and is stable in time. The joint distribution of the time series is then determined by the conditional means, the conditional variances and the marginal distributions of the innovations, which we estimate nonparametrically, and the copula of the innovations, which represents the dependency structure. We consider a nonparametric and a semi parametric estimator based on the estimated residuals. We show that under suitable assumptions, these copula estimators are asymptotically equivalent to estimators that would be based on the unobserved innovations. The theoretical results are illustrated by simulations and a real data example. (C) 2018 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
A copula approach for dependence modeling in multivariate nonparametric time series
Popis výsledku anglicky
This paper is concerned with modeling the dependence structure of two (or more) time series in the presence of a (possibly multivariate) covariate which may include past values of the time series. We assume that the covariate influences only the conditional mean and the conditional variance of each of the time series but the distribution of the standardized innovations is not influenced by the covariate and is stable in time. The joint distribution of the time series is then determined by the conditional means, the conditional variances and the marginal distributions of the innovations, which we estimate nonparametrically, and the copula of the innovations, which represents the dependency structure. We consider a nonparametric and a semi parametric estimator based on the estimated residuals. We show that under suitable assumptions, these copula estimators are asymptotically equivalent to estimators that would be based on the unobserved innovations. The theoretical results are illustrated by simulations and a real data example. (C) 2018 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Multivariate Analysis
ISSN
0047-259X
e-ISSN
—
Svazek periodika
171
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
139-162
Kód UT WoS článku
000463305300010
EID výsledku v databázi Scopus
2-s2.0-85058466309