Relations between various methods for solving linear interval and parametric equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10401028" target="_blank" >RIV/00216208:11320/19:10401028 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=YgZrqU_VzF" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=YgZrqU_VzF</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.laa.2019.03.019" target="_blank" >10.1016/j.laa.2019.03.019</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Relations between various methods for solving linear interval and parametric equations
Popis výsledku v původním jazyce
In the first part of the paper, we consider standard systems of linear interval equations and we focus particularly on two solution methods, the Bauer-Skeel method and the Hansen-Bliek-Rohn method. We show relations between these two methods and between various modifications that are based on preconditioning of the system and on the residual form. We compare as well the quality of the bounds produced by the different variants and we show that for some variants, the Bauer-Skeel bounds naturally arise from other approaches such as Krawczyk of Jacobi iterations, too. In the second part of the paper, we consider interval parametric linear systems with affine-linear dependencies. We also investigate various forms of enclosures, and we not only compare them with each other, but we also show relations to some already known methods. As a consequence, we come up with novel and interesting relations between several algorithms. (C) 2019 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
Relations between various methods for solving linear interval and parametric equations
Popis výsledku anglicky
In the first part of the paper, we consider standard systems of linear interval equations and we focus particularly on two solution methods, the Bauer-Skeel method and the Hansen-Bliek-Rohn method. We show relations between these two methods and between various modifications that are based on preconditioning of the system and on the residual form. We compare as well the quality of the bounds produced by the different variants and we show that for some variants, the Bauer-Skeel bounds naturally arise from other approaches such as Krawczyk of Jacobi iterations, too. In the second part of the paper, we consider interval parametric linear systems with affine-linear dependencies. We also investigate various forms of enclosures, and we not only compare them with each other, but we also show relations to some already known methods. As a consequence, we come up with novel and interesting relations between several algorithms. (C) 2019 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-04735S" target="_blank" >GA18-04735S: Nové přístupy pro relaxační a aproximační techniky v deterministické globální optimalizaci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Linear Algebra and Its Applications
ISSN
0024-3795
e-ISSN
—
Svazek periodika
574
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
1-21
Kód UT WoS článku
000468261000001
EID výsledku v databázi Scopus
2-s2.0-85063395758