Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Pseudo-loop conditions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10401471" target="_blank" >RIV/00216208:11320/19:10401471 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=dixoNBz6DC" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=dixoNBz6DC</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1112/blms.12286" target="_blank" >10.1112/blms.12286</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Pseudo-loop conditions

  • Popis výsledku v původním jazyce

    About a decade ago, it was realised that the satisfaction of a given identity (or equation) of the form f(x1, horizontal ellipsis ,xn)approximate to f(y1, horizontal ellipsis ,yn) in an algebra is equivalent to the algebra forcing a loop into any graph on which it acts and which contains a certain finite subgraph associated with the identity. Such identities have since also been called loop conditions, and this characterisation has produced spectacular results in universal algebra, such as the satisfaction of a Siggers identity s(x,y,z,x)approximate to s(y,x,y,z) in any arbitrary non-trivial finite idempotent algebra. We initiate, from this viewpoint, the systematic study of sets of identities of the form f(x1,1, horizontal ellipsis ,x1,n)approximate to MIDLINE HORIZONTAL ELLIPSIS approximate to f(xm,1, horizontal ellipsis ,xm,n), which we call loop conditions of width m. We show that their satisfaction in an algebra is equivalent to any action of the algebra on a certain type of relation forcing a constant tuple into the relation. Proving that for each fixed width m there is a weakest loop condition (that is, one entailed by all others), we obtain a new and short proof of the recent celebrated result stating that there exists a concrete loop condition of width 3 which is entailed in any non-trivial idempotent, possibly infinite, algebra. The framework of classical (width 2) loop conditions is insufficient for such proof. We then consider pseudo-loop conditions of finite width, a generalisation suitable for non-idempotent algebras; they are of the form u1 circle f(x1,1, horizontal ellipsis ,x1,n)approximate to MIDLINE HORIZONTAL ELLIPSIS approximate to um circle f(xm,1, horizontal ellipsis ,xm,n), and of central importance for the structure of algebras associated with omega-categorical structures. We show that for the latter, satisfaction of a pseudo-loop condition is characterised by pseudo-loops, that is, loops modulo the action of the automorphism group, and that a weakest pseudo-loop condition exists (for omega-categorical cores). This way we obtain a new and short proof of the theorem that the satisfaction of any non-trivial identities of height 1 in such algebras implies the satisfaction of a fixed single identity.

  • Název v anglickém jazyce

    Pseudo-loop conditions

  • Popis výsledku anglicky

    About a decade ago, it was realised that the satisfaction of a given identity (or equation) of the form f(x1, horizontal ellipsis ,xn)approximate to f(y1, horizontal ellipsis ,yn) in an algebra is equivalent to the algebra forcing a loop into any graph on which it acts and which contains a certain finite subgraph associated with the identity. Such identities have since also been called loop conditions, and this characterisation has produced spectacular results in universal algebra, such as the satisfaction of a Siggers identity s(x,y,z,x)approximate to s(y,x,y,z) in any arbitrary non-trivial finite idempotent algebra. We initiate, from this viewpoint, the systematic study of sets of identities of the form f(x1,1, horizontal ellipsis ,x1,n)approximate to MIDLINE HORIZONTAL ELLIPSIS approximate to f(xm,1, horizontal ellipsis ,xm,n), which we call loop conditions of width m. We show that their satisfaction in an algebra is equivalent to any action of the algebra on a certain type of relation forcing a constant tuple into the relation. Proving that for each fixed width m there is a weakest loop condition (that is, one entailed by all others), we obtain a new and short proof of the recent celebrated result stating that there exists a concrete loop condition of width 3 which is entailed in any non-trivial idempotent, possibly infinite, algebra. The framework of classical (width 2) loop conditions is insufficient for such proof. We then consider pseudo-loop conditions of finite width, a generalisation suitable for non-idempotent algebras; they are of the form u1 circle f(x1,1, horizontal ellipsis ,x1,n)approximate to MIDLINE HORIZONTAL ELLIPSIS approximate to um circle f(xm,1, horizontal ellipsis ,xm,n), and of central importance for the structure of algebras associated with omega-categorical structures. We show that for the latter, satisfaction of a pseudo-loop condition is characterised by pseudo-loops, that is, loops modulo the action of the automorphism group, and that a weakest pseudo-loop condition exists (for omega-categorical cores). This way we obtain a new and short proof of the theorem that the satisfaction of any non-trivial identities of height 1 in such algebras implies the satisfaction of a fixed single identity.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Bulletin of the London Mathematical Society

  • ISSN

    0024-6093

  • e-ISSN

  • Svazek periodika

    51

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    20

  • Strana od-do

    917-936

  • Kód UT WoS článku

    000488368700013

  • EID výsledku v databázi Scopus

    2-s2.0-85074199607