On relaxed Šoltés's problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10403434" target="_blank" >RIV/00216208:11320/19:10403434 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pk_e8RKnii" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pk_e8RKnii</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On relaxed Šoltés's problem
Popis výsledku v původním jazyce
TheWiener indexis a graph parameter originating from chemical graphtheory. It is de ned as the sum of the lengths of the shortest paths between all pairsof vertices in given graph. In 1991,Soltes posed the following problem regardingWiener index. Find all graphs such that its Wiener index is preserved upon removalof any vertex. The problem is far from being solved and to this day, only one suchgraph is known { the cycle graph on 11 vertices.In this paper we solve a relaxed version of the problem, proposed by Knor,Majstorovic andSkrekovski. The problem is to nd for a givenk(in nitely many)graphs such that they have exactlykvertices such that if we remove any one ofthem, the Wiener index stays the same. We call such verticesgoodvertices and weshow that there are in nitely many cactus graphs with exactlykcycles of length atleast 7 that contain exactly 2kgood vertices and in nitely many cactus graphs withexactlykcycles of lengthc2 f5;6gthat contain exactlykgood vertices. On theother hand, we prove thatGhas no good vertex if the length of the longest cycleinGis at most 4.
Název v anglickém jazyce
On relaxed Šoltés's problem
Popis výsledku anglicky
TheWiener indexis a graph parameter originating from chemical graphtheory. It is de ned as the sum of the lengths of the shortest paths between all pairsof vertices in given graph. In 1991,Soltes posed the following problem regardingWiener index. Find all graphs such that its Wiener index is preserved upon removalof any vertex. The problem is far from being solved and to this day, only one suchgraph is known { the cycle graph on 11 vertices.In this paper we solve a relaxed version of the problem, proposed by Knor,Majstorovic andSkrekovski. The problem is to nd for a givenk(in nitely many)graphs such that they have exactlykvertices such that if we remove any one ofthem, the Wiener index stays the same. We call such verticesgoodvertices and weshow that there are in nitely many cactus graphs with exactlykcycles of length atleast 7 that contain exactly 2kgood vertices and in nitely many cactus graphs withexactlykcycles of lengthc2 f5;6gthat contain exactlykgood vertices. On theother hand, we prove thatGhas no good vertex if the length of the longest cycleinGis at most 4.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Mathematica Universitatis Comenianae
ISSN
0862-9544
e-ISSN
—
Svazek periodika
88
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
6
Strana od-do
475-480
Kód UT WoS článku
000484349000019
EID výsledku v databázi Scopus
2-s2.0-85078507997