A Relaxed Version of Šoltés's Problem and Cactus Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438590" target="_blank" >RIV/00216208:11320/21:10438590 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22340/21:43923225
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ImqWFHGuN0" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ImqWFHGuN0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40840-021-01144-5" target="_blank" >10.1007/s40840-021-01144-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Relaxed Version of Šoltés's Problem and Cactus Graphs
Popis výsledku v původním jazyce
The Wiener index is one of the most widely studied parameters in chemical graph theory. It is defined as the sum of the lengths of the shortest paths between all unordered pairs of vertices in a given graph. In 1991, Šoltés posed the following problem regarding the Wiener index: Find all graphs such that its Wiener index is preserved upon removal of any vertex. The problem is far from being solved, and to this day, only one graph with such property is known: the cycle graph on 11 vertices. In this paper, we solve a relaxed version of the problem, proposed by Knor et al. in 2018. For a given k, the problem is to find (infinitely many) graphs having exactly k vertices such that the Wiener index remains the same after removing any of them. We call these vertices good vertices, and we show that there are infinitely many cactus graphs with exactly k cycles of length at least 7 that contain exactly 2k good vertices and infinitely many cactus graphs with exactly k cycles of length $c in {5,6}$ that contain exactly k good vertices. On the other hand, we prove that G has no good vertex if the length of the longest cycle in G is at most 4.
Název v anglickém jazyce
A Relaxed Version of Šoltés's Problem and Cactus Graphs
Popis výsledku anglicky
The Wiener index is one of the most widely studied parameters in chemical graph theory. It is defined as the sum of the lengths of the shortest paths between all unordered pairs of vertices in a given graph. In 1991, Šoltés posed the following problem regarding the Wiener index: Find all graphs such that its Wiener index is preserved upon removal of any vertex. The problem is far from being solved, and to this day, only one graph with such property is known: the cycle graph on 11 vertices. In this paper, we solve a relaxed version of the problem, proposed by Knor et al. in 2018. For a given k, the problem is to find (infinitely many) graphs having exactly k vertices such that the Wiener index remains the same after removing any of them. We call these vertices good vertices, and we show that there are infinitely many cactus graphs with exactly k cycles of length at least 7 that contain exactly 2k good vertices and infinitely many cactus graphs with exactly k cycles of length $c in {5,6}$ that contain exactly k good vertices. On the other hand, we prove that G has no good vertex if the length of the longest cycle in G is at most 4.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Bulletin of the Malaysian Mathematical Sciences Society
ISSN
0126-6705
e-ISSN
—
Svazek periodika
2021
Číslo periodika v rámci svazku
44
Stát vydavatele periodika
MY - Malajsie
Počet stran výsledku
13
Strana od-do
3733-3745
Kód UT WoS článku
000654917200001
EID výsledku v databázi Scopus
2-s2.0-85106512768