ON RELAXED SOLTES'S PROBLEM
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F19%3A43918519" target="_blank" >RIV/60461373:22340/19:43918519 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1173/683" target="_blank" >http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1173/683</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ON RELAXED SOLTES'S PROBLEM
Popis výsledku v původním jazyce
The Wiener index is a graph parameter originating from chemical graph theory. It is defined as the sum of the lengths of the shortest paths between all pairs of vertices in given graph. In 1991, Soltes posed the following problem regarding Wiener index. Find all graphs such that its Wiener index is preserved upon removal of any vertex. The problem is far from being solved and to this day, only one such graph is known - the cycle graph on 11 vertices. In this paper we solve a relaxed version of the problem, proposed by Knor, Majstorovic and Skrekovski. The problem is to find for a given k (infinitely many) graphs such that they have exactly k vertices such that if we remove any one of them, the Wiener index stays the same. We call such vertices good vertices and we show that there are infinitely many cactus graphs with exactly k cycles of length at least 7 that contain exactly 2k good vertices and infinitely many cactus graphs with exactly k cycles of length c is an element of {5, 6} that contain exactly k good vertices. On the other hand, we prove that G has no good vertex if the length of the longest cycle in G is at most 4.
Název v anglickém jazyce
ON RELAXED SOLTES'S PROBLEM
Popis výsledku anglicky
The Wiener index is a graph parameter originating from chemical graph theory. It is defined as the sum of the lengths of the shortest paths between all pairs of vertices in given graph. In 1991, Soltes posed the following problem regarding Wiener index. Find all graphs such that its Wiener index is preserved upon removal of any vertex. The problem is far from being solved and to this day, only one such graph is known - the cycle graph on 11 vertices. In this paper we solve a relaxed version of the problem, proposed by Knor, Majstorovic and Skrekovski. The problem is to find for a given k (infinitely many) graphs such that they have exactly k vertices such that if we remove any one of them, the Wiener index stays the same. We call such vertices good vertices and we show that there are infinitely many cactus graphs with exactly k cycles of length at least 7 that contain exactly 2k good vertices and infinitely many cactus graphs with exactly k cycles of length c is an element of {5, 6} that contain exactly k good vertices. On the other hand, we prove that G has no good vertex if the length of the longest cycle in G is at most 4.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
ISSN
0231-6986
e-ISSN
—
Svazek periodika
88
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
6
Strana od-do
475-480
Kód UT WoS článku
000484349000019
EID výsledku v databázi Scopus
2-s2.0-85078507997