Packing directed circuits quarter-integrally
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10404211" target="_blank" >RIV/00216208:11320/19:10404211 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.ESA.2019.72" target="_blank" >https://doi.org/10.4230/LIPIcs.ESA.2019.72</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ESA.2019.72" target="_blank" >10.4230/LIPIcs.ESA.2019.72</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Packing directed circuits quarter-integrally
Popis výsledku v původním jazyce
The celebrated Erdös-Pósa theorem states that every undirected graph that does not admit a family of k vertex-disjoint cycles contains a feedback vertex set (a set of vertices hitting all cycles in the graph) of size O(k log k). After being known for long as Younger's conjecture, a similar statement for directed graphs has been proven in 1996 by Reed, Robertson, Seymour, and Thomas. However, in their proof, the dependency of the size of the feedback vertex set on the size of vertex-disjoint cycle packing is not elementary. We show that if we compare the size of a minimum feedback vertex set in a directed graph with quarter-integral cycle packing number, we obtain a polynomial bound. More precisely, we show that if in a directed graph G there is no family of k cycles such that every vertex of G is in at most four of the cycles, then there exists a feedback vertex set in G of size O(k^4). On the way there we prove a more general result about quarter-integral packing of subgraphs of high directed treewidth: for every pair of positive integers a and b, if a directed graph G has directed treewidth Omega(a^6 b^8 log^2(ab)), then one can find in G a family of a subgraphs, each of directed treewidth at least b, such that every vertex of G is in at most four subgraphs.
Název v anglickém jazyce
Packing directed circuits quarter-integrally
Popis výsledku anglicky
The celebrated Erdös-Pósa theorem states that every undirected graph that does not admit a family of k vertex-disjoint cycles contains a feedback vertex set (a set of vertices hitting all cycles in the graph) of size O(k log k). After being known for long as Younger's conjecture, a similar statement for directed graphs has been proven in 1996 by Reed, Robertson, Seymour, and Thomas. However, in their proof, the dependency of the size of the feedback vertex set on the size of vertex-disjoint cycle packing is not elementary. We show that if we compare the size of a minimum feedback vertex set in a directed graph with quarter-integral cycle packing number, we obtain a polynomial bound. More precisely, we show that if in a directed graph G there is no family of k cycles such that every vertex of G is in at most four of the cycles, then there exists a feedback vertex set in G of size O(k^4). On the way there we prove a more general result about quarter-integral packing of subgraphs of high directed treewidth: for every pair of positive integers a and b, if a directed graph G has directed treewidth Omega(a^6 b^8 log^2(ab)), then one can find in G a family of a subgraphs, each of directed treewidth at least b, such that every vertex of G is in at most four subgraphs.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
27th Annual European Symposium on Algorithms (ESA 2019)
ISBN
978-3-95977-124-5
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
13
Strana od-do
1-13
Název nakladatele
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Místo vydání
Dagstuhl, Germany
Místo konání akce
Mnichov
Datum konání akce
9. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—