Packing Directed Cycles Quarter- and Half-Integrally
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455184" target="_blank" >RIV/00216208:11320/22:10455184 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FSUnV1HfBz" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FSUnV1HfBz</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00493-021-4743-y" target="_blank" >10.1007/s00493-021-4743-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Packing Directed Cycles Quarter- and Half-Integrally
Popis výsledku v původním jazyce
The celebrated Erdos-Posa theorem states that every undirected graph that does not admit a family of k vertex-disjoint cycles contains a feedback vertex set (a set of vertices hitting all cycles in the graph) of size O(k logk). The analogous result for directed graphs has been proven by Reed, Robertson, Seymour, and Thomas, but their proof yields a nonelementary dependency of the size of the feedback vertex set on the size of vertexdisjoint cycle packing. We show that we can obtain a polynomial bound if we relax the disjointness condition. More precisely, we show that if in a directed graph G there is no family of k cycles such that every vertex of G is in at most two (resp. four) of the cycles, then there exists a feedback vertex set in G of size O(k^6) (resp. O(k^4)). We show also variants of the above statements for butterfly minor models of any strongly connected digraph that is a minor of a directed cylindrical grid and for quarter-integral packings of subgraphs of high directed treewidth.
Název v anglickém jazyce
Packing Directed Cycles Quarter- and Half-Integrally
Popis výsledku anglicky
The celebrated Erdos-Posa theorem states that every undirected graph that does not admit a family of k vertex-disjoint cycles contains a feedback vertex set (a set of vertices hitting all cycles in the graph) of size O(k logk). The analogous result for directed graphs has been proven by Reed, Robertson, Seymour, and Thomas, but their proof yields a nonelementary dependency of the size of the feedback vertex set on the size of vertexdisjoint cycle packing. We show that we can obtain a polynomial bound if we relax the disjointness condition. More precisely, we show that if in a directed graph G there is no family of k cycles such that every vertex of G is in at most two (resp. four) of the cycles, then there exists a feedback vertex set in G of size O(k^6) (resp. O(k^4)). We show also variants of the above statements for butterfly minor models of any strongly connected digraph that is a minor of a directed cylindrical grid and for quarter-integral packings of subgraphs of high directed treewidth.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Combinatorica
ISSN
0209-9683
e-ISSN
1439-6912
Svazek periodika
42
Číslo periodika v rámci svazku
supplement issue 2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
30
Strana od-do
1409-1438
Kód UT WoS článku
000857466700006
EID výsledku v databázi Scopus
2-s2.0-85130644399