Approximating the extreme Ritz values and upper bounds for the A-norm of the error in CG
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10404361" target="_blank" >RIV/00216208:11320/19:10404361 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4.M-wp_6FJ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4.M-wp_6FJ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11075-018-0634-8" target="_blank" >10.1007/s11075-018-0634-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Approximating the extreme Ritz values and upper bounds for the A-norm of the error in CG
Popis výsledku v původním jazyce
In practical conjugate gradient (CG) computations, it is important to monitor the quality of the approximate solution to Ax = b so that the CG algorithm can be stopped when the required accuracy is reached. The relevant convergence characteristics, like the A-norm of the error or the normwise backward error, cannot be easily computed. However, they can be estimated. Such estimates often depend on approximations of the smallest or largest eigenvalue of A. In the paper, we introduce a new upper bound for the A-norm of the error, which is closely related to the Gauss-Radau upper bound, and discuss the problem of choosing the parameter mu which should represent a lower bound for the smallest eigenvalue of A. The new bound has several practical advantages, the most important one is that it can be used as an approximation to the A-norm of the error even if mu is not exactly a lower bound for the smallest eigenvalue of A. In this case, mu can be chosen, e.g., as the smallest Ritz value or its approximation. We also describe a very cheap algorithm, based on the incremental norm estimation technique, which allows to estimate the smallest and largest Ritz values during the CG computations. An improvement of the accuracy of these estimates of extreme Ritz values is possible, at the cost of storing the CG coefficients and solving a linear system with a tridiagonal matrix at each CG iteration. Finally, we discuss how to cheaply approximate the normwise backward error. The numerical experiments demonstrate the efficiency of the estimates of the extreme Ritz values, and show their practical use in error estimation in CG.
Název v anglickém jazyce
Approximating the extreme Ritz values and upper bounds for the A-norm of the error in CG
Popis výsledku anglicky
In practical conjugate gradient (CG) computations, it is important to monitor the quality of the approximate solution to Ax = b so that the CG algorithm can be stopped when the required accuracy is reached. The relevant convergence characteristics, like the A-norm of the error or the normwise backward error, cannot be easily computed. However, they can be estimated. Such estimates often depend on approximations of the smallest or largest eigenvalue of A. In the paper, we introduce a new upper bound for the A-norm of the error, which is closely related to the Gauss-Radau upper bound, and discuss the problem of choosing the parameter mu which should represent a lower bound for the smallest eigenvalue of A. The new bound has several practical advantages, the most important one is that it can be used as an approximation to the A-norm of the error even if mu is not exactly a lower bound for the smallest eigenvalue of A. In this case, mu can be chosen, e.g., as the smallest Ritz value or its approximation. We also describe a very cheap algorithm, based on the incremental norm estimation technique, which allows to estimate the smallest and largest Ritz values during the CG computations. An improvement of the accuracy of these estimates of extreme Ritz values is possible, at the cost of storing the CG coefficients and solving a linear system with a tridiagonal matrix at each CG iteration. Finally, we discuss how to cheaply approximate the normwise backward error. The numerical experiments demonstrate the efficiency of the estimates of the extreme Ritz values, and show their practical use in error estimation in CG.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GC17-04150J" target="_blank" >GC17-04150J: Robustní dvojúrovňové simulace založené na Fourierově metodě a metodě konečných prvků: Odhady chyb, redukované modely a stochastika</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Numerical Algorithms
ISSN
1017-1398
e-ISSN
—
Svazek periodika
82
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
32
Strana od-do
937-968
Kód UT WoS článku
000500985000009
EID výsledku v databázi Scopus
2-s2.0-85057083507