The behavior of the Gauss-Radau upper bound of the error norm in CG
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10472974" target="_blank" >RIV/00216208:11320/23:10472974 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_hhocVg9B1" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_hhocVg9B1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11075-023-01522-z" target="_blank" >10.1007/s11075-023-01522-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The behavior of the Gauss-Radau upper bound of the error norm in CG
Popis výsledku v původním jazyce
Consider the problem of solving systems of linear algebraic equations Ax = b with a real symmetric positive definite matrix A using the conjugate gradient (CG) method. To stop the algorithm at the appropriate moment, it is important to monitor the quality of the approximate solution. One of the most relevant quantities for measuring the quality of the approximate solution is the A-norm of the error. This quantity cannot be easily computed; however, it can be estimated. In this paper we discuss and analyze the behavior of theGauss-Radau upper bound on the A-norm of the error, based on viewing CG as a procedure for approximating a certain Riemann-Stieltjes integral. This upper bound depends on a prescribed underestimate mu to the smallest eigenvalue of A. We concentrate on explaining a phenomenon observed during computations showing that, in later CG iterations, the upper bound loses its accuracy, and is almost independent of mu. We construct amodel problem that is used to demonstrate and study the behavior of the upper bound in dependence of mu, and developed formulas that are helpful in understanding this behavior. We show that the above-mentioned phenomenon is closely related to the convergence of the smallest Ritz value to the smallest eigenvalue of A. It occurs when the smallest Ritz value is a better approximation to the smallest eigenvalue than the prescribed underestimate mu. We also suggest an adaptive strategy for improving the accuracy of the upper bounds in the previous iterations.
Název v anglickém jazyce
The behavior of the Gauss-Radau upper bound of the error norm in CG
Popis výsledku anglicky
Consider the problem of solving systems of linear algebraic equations Ax = b with a real symmetric positive definite matrix A using the conjugate gradient (CG) method. To stop the algorithm at the appropriate moment, it is important to monitor the quality of the approximate solution. One of the most relevant quantities for measuring the quality of the approximate solution is the A-norm of the error. This quantity cannot be easily computed; however, it can be estimated. In this paper we discuss and analyze the behavior of theGauss-Radau upper bound on the A-norm of the error, based on viewing CG as a procedure for approximating a certain Riemann-Stieltjes integral. This upper bound depends on a prescribed underestimate mu to the smallest eigenvalue of A. We concentrate on explaining a phenomenon observed during computations showing that, in later CG iterations, the upper bound loses its accuracy, and is almost independent of mu. We construct amodel problem that is used to demonstrate and study the behavior of the upper bound in dependence of mu, and developed formulas that are helpful in understanding this behavior. We show that the above-mentioned phenomenon is closely related to the convergence of the smallest Ritz value to the smallest eigenvalue of A. It occurs when the smallest Ritz value is a better approximation to the smallest eigenvalue than the prescribed underestimate mu. We also suggest an adaptive strategy for improving the accuracy of the upper bounds in the previous iterations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-01074S" target="_blank" >GA20-01074S: Adaptivní metody pro numerické řešení parciálních diferenciálních rovnic: analýza, odhady chyb a iterativní řešiče</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Numerical Algorithms
ISSN
1017-1398
e-ISSN
1572-9265
Svazek periodika
94
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
30
Strana od-do
847-876
Kód UT WoS článku
000973631900002
EID výsledku v databázi Scopus
2-s2.0-85153079846