Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Accurate error estimation in CG

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00546795" target="_blank" >RIV/67985840:_____/21:00546795 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11320/21:10436065

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s11075-021-01078-w" target="_blank" >https://doi.org/10.1007/s11075-021-01078-w</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11075-021-01078-w" target="_blank" >10.1007/s11075-021-01078-w</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Accurate error estimation in CG

  • Popis výsledku v původním jazyce

    In practical computations, the (preconditioned) conjugate gradient (P)CG method is the iterative method of choice for solving systems of linear algebraic equations Ax = b with a real symmetric positive definite matrix A. During the iterations, it is important to monitor the quality of the approximate solution xk so that the process could be stopped whenever xk is accurate enough. One of the most relevant quantities for monitoring the quality of xk is the squared A-norm of the error vector x − xk. This quantity cannot be easily evaluated, however, it can be estimated. Many of the existing estimation techniques are inspired by the view of CG as a procedure for approximating a certain Riemann–Stieltjes integral. The most natural technique is based on the Gauss quadrature approximation and provides a lower bound on the quantity of interest. The bound can be cheaply evaluated using terms that have to be computed anyway in the forthcoming CG iterations.

  • Název v anglickém jazyce

    Accurate error estimation in CG

  • Popis výsledku anglicky

    In practical computations, the (preconditioned) conjugate gradient (P)CG method is the iterative method of choice for solving systems of linear algebraic equations Ax = b with a real symmetric positive definite matrix A. During the iterations, it is important to monitor the quality of the approximate solution xk so that the process could be stopped whenever xk is accurate enough. One of the most relevant quantities for monitoring the quality of xk is the squared A-norm of the error vector x − xk. This quantity cannot be easily evaluated, however, it can be estimated. Many of the existing estimation techniques are inspired by the view of CG as a procedure for approximating a certain Riemann–Stieltjes integral. The most natural technique is based on the Gauss quadrature approximation and provides a lower bound on the quantity of interest. The bound can be cheaply evaluated using terms that have to be computed anyway in the forthcoming CG iterations.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA20-01074S" target="_blank" >GA20-01074S: Adaptivní metody pro numerické řešení parciálních diferenciálních rovnic: analýza, odhady chyb a iterativní řešiče</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Numerical Algorithms

  • ISSN

    1017-1398

  • e-ISSN

    1572-9265

  • Svazek periodika

    88

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    23

  • Strana od-do

    1337-1359

  • Kód UT WoS článku

    000635870100002

  • EID výsledku v databázi Scopus

    2-s2.0-85103422252