An adaptive s-step conjugate gradient algorithm with dynamic basis updating
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420369" target="_blank" >RIV/00216208:11320/20:10420369 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=QL3~wBCdgg" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=QL3~wBCdgg</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/AM.2020.0136-19" target="_blank" >10.21136/AM.2020.0136-19</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An adaptive s-step conjugate gradient algorithm with dynamic basis updating
Popis výsledku v původním jazyce
The adaptive s-step CG algorithm is a solver for sparse symmetric positive definite linear systems designed to reduce the synchronization cost per iteration while still achieving a user-specified accuracy requirement. In this work, we improve the adaptive s-step conjugate gradient algorithm by the use of iteratively updated estimates of the largest and smallest Ritz values, which give approximations of the largest and smallest eigenvalues of A, using a technique due to G.Meurant and P.Tichy (2018). The Ritz value estimates are used to dynamically update parameters for constructing Newton or Chebyshev polynomials so that the conditioning of the s-step bases can be continuously improved throughout the iterations. These estimates are also used to automatically set a variable related to the ratio of the sizes of the error and residual, which was previously treated as an input parameter. We show through numerical experiments that in many cases the new algorithm improves upon the previous adaptive s-step approach both in terms of numerical behavior and reduction in number of synchronizations.
Název v anglickém jazyce
An adaptive s-step conjugate gradient algorithm with dynamic basis updating
Popis výsledku anglicky
The adaptive s-step CG algorithm is a solver for sparse symmetric positive definite linear systems designed to reduce the synchronization cost per iteration while still achieving a user-specified accuracy requirement. In this work, we improve the adaptive s-step conjugate gradient algorithm by the use of iteratively updated estimates of the largest and smallest Ritz values, which give approximations of the largest and smallest eigenvalues of A, using a technique due to G.Meurant and P.Tichy (2018). The Ritz value estimates are used to dynamically update parameters for constructing Newton or Chebyshev polynomials so that the conditioning of the s-step bases can be continuously improved throughout the iterations. These estimates are also used to automatically set a variable related to the ratio of the sizes of the error and residual, which was previously treated as an input parameter. We show through numerical experiments that in many cases the new algorithm improves upon the previous adaptive s-step approach both in terms of numerical behavior and reduction in number of synchronizations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applications of Mathematics
ISSN
0862-7940
e-ISSN
—
Svazek periodika
65
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
29
Strana od-do
123-151
Kód UT WoS článku
000525004700002
EID výsledku v databázi Scopus
2-s2.0-85083324122