Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Density and Fractal Property of the Class of Oriented Trees

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10404788" target="_blank" >RIV/00216208:11320/19:10404788 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=X35gs1TVyT" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=X35gs1TVyT</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Density and Fractal Property of the Class of Oriented Trees

  • Popis výsledku v původním jazyce

    We show a density theorem for the class of finite proper trees ordered by the homomorphism order, where a proper tree is an oriented tree which is not homomorphic to a path. We also show that every interval of proper trees, in addition to being dense, is in fact universal. We end by considering the fractal property in the class of all finite digraphs. This complements the characterization of finite dualities of finite digraphs.

  • Název v anglickém jazyce

    Density and Fractal Property of the Class of Oriented Trees

  • Popis výsledku anglicky

    We show a density theorem for the class of finite proper trees ordered by the homomorphism order, where a proper tree is an oriented tree which is not homomorphic to a path. We also show that every interval of proper trees, in addition to being dense, is in fact universal. We end by considering the fractal property in the class of all finite digraphs. This complements the characterization of finite dualities of finite digraphs.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ18-13685Y" target="_blank" >GJ18-13685Y: Teorie modelů a extrémální kombinatorika</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Acta Mathematica Universitatis Comenianae

  • ISSN

    0862-9544

  • e-ISSN

  • Svazek periodika

    88

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    SK - Slovenská republika

  • Počet stran výsledku

    6

  • Strana od-do

    813-818

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85073804767