Inner entanglements: Narrowing the search in classical planning by problem reformulation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10408238" target="_blank" >RIV/00216208:11320/19:10408238 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/19:00334343
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=prXvsY__oC" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=prXvsY__oC</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/coin.12203" target="_blank" >10.1111/coin.12203</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Inner entanglements: Narrowing the search in classical planning by problem reformulation
Popis výsledku v původním jazyce
In the field of automated planning, the central research focus is on domain-independent planning engines that accept planning tasks (domain models and problem descriptions) in a description language, such as Planning Domain Definition Language, and return solution plans. The performance of planning engines can be improved by gathering additional knowledge about specific planning domain models/tasks (such as control rules) that can narrow the search for a solution plan. Such knowledge is often learned from training plans and solutions of simple tasks. Using techniques to reformulate the given planning task to incorporate additional knowledge, while keeping to the same input language, allows to exploit off-the-shelf planning engines. In this paper, we present inner entanglements that are relations between pairs of operators and predicates that represent the exclusivity of predicate achievement or requirement between the given operators. Inner entanglements can be encoded into a planner's input language by transforming the original planning task; hence, planning engines can exploit them. The contribution of this paper is to provide an in-depth analysis and evaluation of inner entanglements, covering theoretical aspects such as complexity results, and an extensive empirical study using International Planning Competition benchmarks and state-of-the-art planning engines.
Název v anglickém jazyce
Inner entanglements: Narrowing the search in classical planning by problem reformulation
Popis výsledku anglicky
In the field of automated planning, the central research focus is on domain-independent planning engines that accept planning tasks (domain models and problem descriptions) in a description language, such as Planning Domain Definition Language, and return solution plans. The performance of planning engines can be improved by gathering additional knowledge about specific planning domain models/tasks (such as control rules) that can narrow the search for a solution plan. Such knowledge is often learned from training plans and solutions of simple tasks. Using techniques to reformulate the given planning task to incorporate additional knowledge, while keeping to the same input language, allows to exploit off-the-shelf planning engines. In this paper, we present inner entanglements that are relations between pairs of operators and predicates that represent the exclusivity of predicate achievement or requirement between the given operators. Inner entanglements can be encoded into a planner's input language by transforming the original planning task; hence, planning engines can exploit them. The contribution of this paper is to provide an in-depth analysis and evaluation of inner entanglements, covering theoretical aspects such as complexity results, and an extensive empirical study using International Planning Competition benchmarks and state-of-the-art planning engines.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50803 - Information science (social aspects)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Intelligence
ISSN
0824-7935
e-ISSN
—
Svazek periodika
35
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
35
Strana od-do
395-429
Kód UT WoS článku
000466182600006
EID výsledku v databázi Scopus
2-s2.0-85063265042