Aspectual coding asymmetries: Predicting aspectual verb lengths by the effects frequency and information content
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10427056" target="_blank" >RIV/00216208:11320/19:10427056 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciendo.com/article/10.2478/topling-2019-0009" target="_blank" >https://www.sciendo.com/article/10.2478/topling-2019-0009</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Aspectual coding asymmetries: Predicting aspectual verb lengths by the effects frequency and information content
Popis výsledku v původním jazyce
Abstract The topic of this paper is the interaction of aspectual verb coding, information content and lengths of verbs, as generally stated in Shannon’s source coding theorem on the interaction between the coding and length of a message. We hypothesize that, based on this interaction, lengths of aspectual verb forms can be predicted from both their aspectual coding and their information. The point of departure is the assumption that each verb has a default aspectual value and that this value can be estimated based on frequency – which has, according to Zipf’s law, a negative correlation with length. Employing a linear mixed-effects model fitted with a random effect for LEMMA, effects of the predictors’ DEFAULT – i.e. the default aspect value of verbs, the Zipfian predictor FREQUENCY and the entropy-based predictor AVERAGE INFORMATION CONTENT – are compared with average aspectual verb form lengths. Data resources are 18 UD treebanks. Significantly differing impacts of the predictors on verb lengths across our test set of languages have come to light and, in addition, the hypothesis of coding asymmetry does not turn out to be true for all languages in focus.
Název v anglickém jazyce
Aspectual coding asymmetries: Predicting aspectual verb lengths by the effects frequency and information content
Popis výsledku anglicky
Abstract The topic of this paper is the interaction of aspectual verb coding, information content and lengths of verbs, as generally stated in Shannon’s source coding theorem on the interaction between the coding and length of a message. We hypothesize that, based on this interaction, lengths of aspectual verb forms can be predicted from both their aspectual coding and their information. The point of departure is the assumption that each verb has a default aspectual value and that this value can be estimated based on frequency – which has, according to Zipf’s law, a negative correlation with length. Employing a linear mixed-effects model fitted with a random effect for LEMMA, effects of the predictors’ DEFAULT – i.e. the default aspect value of verbs, the Zipfian predictor FREQUENCY and the entropy-based predictor AVERAGE INFORMATION CONTENT – are compared with average aspectual verb form lengths. Data resources are 18 UD treebanks. Significantly differing impacts of the predictors on verb lengths across our test set of languages have come to light and, in addition, the hypothesis of coding asymmetry does not turn out to be true for all languages in focus.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů