A Generative Model for Punctuation in Dependency Trees
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10427059" target="_blank" >RIV/00216208:11320/19:10427059 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1162/tacl_a_00273" target="_blank" >https://doi.org/10.1162/tacl_a_00273</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Generative Model for Punctuation in Dependency Trees
Popis výsledku v původním jazyce
Treebanks traditionally treat punctuation marks as ordinary words, but linguists have suggested that a tree’s “true” punctuation marks are not observed (Nunberg, 1990). These latent “underlying” marks serve to delimit or separate constituents in the syntax tree. When the tree’s yield is rendered as a written sentence, a string rewriting mechanism transduces the underlying marks into “surface” marks, which are part of the observed (surface) string but should not be regarded as part of the tree. We formalize this idea in a generative model of punctuation that admits efficient dynamic programming. We train it without observing the underlying marks, by locally maximizing the incomplete data likelihood (similarly to the EM algorithm). When we use the trained model to reconstruct the tree’s underlying punctuation, the results appear plausible across 5 languages, and in particular are consistent with Nunberg’s analysis of English. We show that our generative model can be used to beat baselines on punctuation restoration. Also, our reconstruction of a sentence’s underlying punctuation lets us appropriately render the surface punctuation (via our trained underlying-to-surface mechanism) when we syntactically transform the sentence.
Název v anglickém jazyce
A Generative Model for Punctuation in Dependency Trees
Popis výsledku anglicky
Treebanks traditionally treat punctuation marks as ordinary words, but linguists have suggested that a tree’s “true” punctuation marks are not observed (Nunberg, 1990). These latent “underlying” marks serve to delimit or separate constituents in the syntax tree. When the tree’s yield is rendered as a written sentence, a string rewriting mechanism transduces the underlying marks into “surface” marks, which are part of the observed (surface) string but should not be regarded as part of the tree. We formalize this idea in a generative model of punctuation that admits efficient dynamic programming. We train it without observing the underlying marks, by locally maximizing the incomplete data likelihood (similarly to the EM algorithm). When we use the trained model to reconstruct the tree’s underlying punctuation, the results appear plausible across 5 languages, and in particular are consistent with Nunberg’s analysis of English. We show that our generative model can be used to beat baselines on punctuation restoration. Also, our reconstruction of a sentence’s underlying punctuation lets us appropriately render the surface punctuation (via our trained underlying-to-surface mechanism) when we syntactically transform the sentence.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů