Neural Dependency Parsing of Biomedical Text: TurkuNLP entry in the CRAFT Structural Annotation Task
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10427072" target="_blank" >RIV/00216208:11320/19:10427072 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aclweb.org/anthology/D19-5728" target="_blank" >https://www.aclweb.org/anthology/D19-5728</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Neural Dependency Parsing of Biomedical Text: TurkuNLP entry in the CRAFT Structural Annotation Task
Popis výsledku v původním jazyce
We present the approach taken by the TurkuNLP group in the CRAFT Structural Annotation task, a shared task on dependency parsing. Our approach builds primarily on the Turku neural parser, a native dependency parser that ranked among the best in the recent CoNLL tasks on parsing Universal Dependencies. To adapt the parser to the biomedical domain, we considered and evaluated a number of approaches, including the generation of custom word embeddings, combination with other in-domain resources, and the incorporation of information from named entity recognition. We achieved a labeled attachment score of 89.7%, the best result among task participants.
Název v anglickém jazyce
Neural Dependency Parsing of Biomedical Text: TurkuNLP entry in the CRAFT Structural Annotation Task
Popis výsledku anglicky
We present the approach taken by the TurkuNLP group in the CRAFT Structural Annotation task, a shared task on dependency parsing. Our approach builds primarily on the Turku neural parser, a native dependency parser that ranked among the best in the recent CoNLL tasks on parsing Universal Dependencies. To adapt the parser to the biomedical domain, we considered and evaluated a number of approaches, including the generation of custom word embeddings, combination with other in-domain resources, and the incorporation of information from named entity recognition. We achieved a labeled attachment score of 89.7%, the best result among task participants.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů