Entropy-controlled fully reversible nanostructure formation of Ge on miscut vicinal Si(001) surfaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10414816" target="_blank" >RIV/00216208:11320/20:10414816 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/20:00116625
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=71TpXPgaZZ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=71TpXPgaZZ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevB.102.075420" target="_blank" >10.1103/PhysRevB.102.075420</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Entropy-controlled fully reversible nanostructure formation of Ge on miscut vicinal Si(001) surfaces
Popis výsledku v původním jazyce
Entropy effects substantially modify the growth of self-assembled Ge nanostructures on vicinal Si(001) surfaces, on which one-dimensional nanowire-like structures are formed. As shown by variable temperature scanning tunneling microscopy, these nanostructures are not only tunable in size and shape, but can be fully reversibly erased and reformed without changes in sizes and composition. This unprecedented behavior is caused by the strong free surface energy renormalization due to the large step entropy of vicinal surfaces that strongly increases with increasing temperature. This favors a planar two-dimensional surface at higher temperatures in thermodynamic equilibrium, whereas the nanostructured surface is the preferred low-temperature configuration. Taking the step entropy into account, the critical transition temperature between these surface states derived by free-energy minimization is shown to scale nearly linearly with the Ge coverage-in excellent agreement with the experiments. Most importantly, the nanowire sizes are found to be deterministically controlled by the Ge thickness and vicinal angle, independently of the growth or annealing conditions. Thus, highly reproducible structures with tunable nanogeometries and -dimensions are obtained, which opens promising avenues for device applications.
Název v anglickém jazyce
Entropy-controlled fully reversible nanostructure formation of Ge on miscut vicinal Si(001) surfaces
Popis výsledku anglicky
Entropy effects substantially modify the growth of self-assembled Ge nanostructures on vicinal Si(001) surfaces, on which one-dimensional nanowire-like structures are formed. As shown by variable temperature scanning tunneling microscopy, these nanostructures are not only tunable in size and shape, but can be fully reversibly erased and reformed without changes in sizes and composition. This unprecedented behavior is caused by the strong free surface energy renormalization due to the large step entropy of vicinal surfaces that strongly increases with increasing temperature. This favors a planar two-dimensional surface at higher temperatures in thermodynamic equilibrium, whereas the nanostructured surface is the preferred low-temperature configuration. Taking the step entropy into account, the critical transition temperature between these surface states derived by free-energy minimization is shown to scale nearly linearly with the Ge coverage-in excellent agreement with the experiments. Most importantly, the nanowire sizes are found to be deterministically controlled by the Ge thickness and vicinal angle, independently of the growth or annealing conditions. Thus, highly reproducible structures with tunable nanogeometries and -dimensions are obtained, which opens promising avenues for device applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review B
ISSN
2469-9950
e-ISSN
—
Svazek periodika
102
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
075420
Kód UT WoS článku
000557726800009
EID výsledku v databázi Scopus
2-s2.0-85090124638