SOMHunter: Lightweight Video Search System with SOM-Guided Relevance Feedback
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10417772" target="_blank" >RIV/00216208:11320/20:10417772 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/pdf/10.1145/3394171.3414542" target="_blank" >https://dl.acm.org/doi/pdf/10.1145/3394171.3414542</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3394171.3414542" target="_blank" >10.1145/3394171.3414542</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SOMHunter: Lightweight Video Search System with SOM-Guided Relevance Feedback
Popis výsledku v původním jazyce
In the last decade, the Video Browser Showdown (VBS) became a comparative platform for various interactive video search tools competing in selected video retrieval tasks. However, the participation of new teams with an own, novel tool is prohibitively time-demanding because of the large number and complexity of components required for constructing a video search system from scratch. To partially alleviate this difficulty, we provide an open-source version of the lightweight known-item search system SOMHunter that competed successfully at VBS 2020. The system combines several features for text-based search initialization and browsing of large result sets; in particular a variant of W2VV++ model for text search, temporal queries for targeting sequences of frames, several types of displays including the eponymous self-organizing map view, and a feedback-based approach for maintaining the relevance scores inspired by PICHunter. The minimalistic, easily extensible implementation of SOMHunter should serve as a solid basis for constructing new search systems, thus facilitating easier exploration of new video retrieval ideas.
Název v anglickém jazyce
SOMHunter: Lightweight Video Search System with SOM-Guided Relevance Feedback
Popis výsledku anglicky
In the last decade, the Video Browser Showdown (VBS) became a comparative platform for various interactive video search tools competing in selected video retrieval tasks. However, the participation of new teams with an own, novel tool is prohibitively time-demanding because of the large number and complexity of components required for constructing a video search system from scratch. To partially alleviate this difficulty, we provide an open-source version of the lightweight known-item search system SOMHunter that competed successfully at VBS 2020. The system combines several features for text-based search initialization and browsing of large result sets; in particular a variant of W2VV++ model for text search, temporal queries for targeting sequences of frames, several types of displays including the eponymous self-organizing map view, and a feedback-based approach for maintaining the relevance scores inspired by PICHunter. The minimalistic, easily extensible implementation of SOMHunter should serve as a solid basis for constructing new search systems, thus facilitating easier exploration of new video retrieval ideas.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
MM '20: The 28th ACM International Conference on Multimedia
ISBN
978-1-4503-7988-5
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
4481-4484
Název nakladatele
Association for Computing Machinery
Místo vydání
New York, NY, USA
Místo konání akce
Seattle, USA
Datum konání akce
12. 10. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—