Enhanced SOMHunter for Known-item Search in Lifelog Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10433625" target="_blank" >RIV/00216208:11320/21:10433625 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3463948.3469074" target="_blank" >https://doi.org/10.1145/3463948.3469074</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3463948.3469074" target="_blank" >10.1145/3463948.3469074</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhanced SOMHunter for Known-item Search in Lifelog Data
Popis výsledku v původním jazyce
SOMHunter represents a modern light-weight framework for known-item search in datasets of visual data like images or videos. The framework combines an effective W2VV++ text-to-image search approach, a traditional Bayesian like model for maintenance of relevance scores influenced by positive examples, and several types of exploration and exploitation displays. With this initial setting in 2020, already the first prototype of the system turned out to be highly competitive in comparison with other state-of-the-art systems at Video Browser Showdown and Lifelog Search Challenge competitions. In this paper, we present a new version of the system further extending the list of visual data search capabilities. The new version combines localized text queries with collage queries tested at VBS 2021 in two separate systems by our team. Furthermore, the new version of SOMHunter will integrate also the new CLIP text search model recently released by OpenAI. We believe that all the extensions will improve chances to effectively initialize the search that can continue with already supported browsing capabilities.
Název v anglickém jazyce
Enhanced SOMHunter for Known-item Search in Lifelog Data
Popis výsledku anglicky
SOMHunter represents a modern light-weight framework for known-item search in datasets of visual data like images or videos. The framework combines an effective W2VV++ text-to-image search approach, a traditional Bayesian like model for maintenance of relevance scores influenced by positive examples, and several types of exploration and exploitation displays. With this initial setting in 2020, already the first prototype of the system turned out to be highly competitive in comparison with other state-of-the-art systems at Video Browser Showdown and Lifelog Search Challenge competitions. In this paper, we present a new version of the system further extending the list of visual data search capabilities. The new version combines localized text queries with collage queries tested at VBS 2021 in two separate systems by our team. Furthermore, the new version of SOMHunter will integrate also the new CLIP text search model recently released by OpenAI. We believe that all the extensions will improve chances to effectively initialize the search that can continue with already supported browsing capabilities.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-22071Y" target="_blank" >GJ19-22071Y: Flexibilní modely pro hledání známé scény v rozsáhlých kolekcích videa</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
LSC '21: Proceedings of the 4th Annual on Lifelog Search Challenge
ISBN
978-1-4503-8533-6
ISSN
—
e-ISSN
—
Počet stran výsledku
3
Strana od-do
71-73
Název nakladatele
ACM
Místo vydání
New YorkNYUnited States
Místo konání akce
Taipei, Taiwan
Datum konání akce
21. 8. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—