Hrushovski's Encoding and ω-Categorical CSP Monsters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420930" target="_blank" >RIV/00216208:11320/20:10420930 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.ICALP.2020.131" target="_blank" >https://doi.org/10.4230/LIPIcs.ICALP.2020.131</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2020.131" target="_blank" >10.4230/LIPIcs.ICALP.2020.131</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hrushovski's Encoding and ω-Categorical CSP Monsters
Popis výsledku v původním jazyce
We produce a class of ω-categorical structures with finite signature by applying a model-theoretic construction - a refinement of an encoding due to Hrushosvki - to ω-categorical structures in a possibly infinite signature. We show that the encoded structures retain desirable algebraic properties of the original structures, but that the constraint satisfaction problems (CSPs) associated with these structures can be badly behaved in terms of computational complexity. This method allows us to systematically generate ω-categorical templates whose CSPs are complete for a variety of complexity classes of arbitrarily high complexity, and ω-categorical templates that show that membership in any given complexity class cannot be expressed by a set of identities on the polymorphisms. It moreover enables us to prove that recent results about the relevance of topology on polymorphism clones of ω-categorical structures also apply for CSP templates, i.e., structures in a finite language. Finally, we obtain a concrete algebraic criterion which could constitute a description of the delineation between tractability and NP-hardness in the dichotomy conjecture for first-order reducts of finitely bounded homogeneous structures.
Název v anglickém jazyce
Hrushovski's Encoding and ω-Categorical CSP Monsters
Popis výsledku anglicky
We produce a class of ω-categorical structures with finite signature by applying a model-theoretic construction - a refinement of an encoding due to Hrushosvki - to ω-categorical structures in a possibly infinite signature. We show that the encoded structures retain desirable algebraic properties of the original structures, but that the constraint satisfaction problems (CSPs) associated with these structures can be badly behaved in terms of computational complexity. This method allows us to systematically generate ω-categorical templates whose CSPs are complete for a variety of complexity classes of arbitrarily high complexity, and ω-categorical templates that show that membership in any given complexity class cannot be expressed by a set of identities on the polymorphisms. It moreover enables us to prove that recent results about the relevance of topology on polymorphism clones of ω-categorical structures also apply for CSP templates, i.e., structures in a finite language. Finally, we obtain a concrete algebraic criterion which could constitute a description of the delineation between tractability and NP-hardness in the dichotomy conjecture for first-order reducts of finitely bounded homogeneous structures.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-01832S" target="_blank" >GA13-01832S: Obecná algebra a její souvislost s informatikou</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Leibniz International Proceedings in Informatics, LIPIcs
ISBN
—
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
17
Strana od-do
1-17
Název nakladatele
Schloss Dagstuhl-Leibniz
Místo vydání
Německo
Místo konání akce
SRN, online
Datum konání akce
8. 7. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—