WHEN SYMMETRIES ARE NOT ENOUGH: A HIERARCHY OF HARD CONSTRAINT SATISFACTION PROBLEMS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452373" target="_blank" >RIV/00216208:11320/22:10452373 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ah9yRIa7N3" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ah9yRIa7N3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/20M1383471" target="_blank" >10.1137/20M1383471</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
WHEN SYMMETRIES ARE NOT ENOUGH: A HIERARCHY OF HARD CONSTRAINT SATISFACTION PROBLEMS
Popis výsledku v původním jazyce
We produce a class of w-categorical structures with finite signature by applying a model-theoretic construction---a refinement of the Hrushovski-enco ding---to w-categorical structures in a possibly infinite signature. We show that the encoded structures retain desirable algebraic properties of the original structures, but that the constraint satisfaction problems (CSPs) associated with these structures can be badly behaved in terms of computational complexity. This method allows us to systematically generate w-categorical templates whose CSPs are complete for a variety of complexity classes of arbitrarily high complexity and w-categorical templates that show that membership in any given complexity class containing AC0 cannot be expressed by a set of identities on the polymorphisms. It moreover enables us to prove that recent results about the relevance of topology on polymorphism clones of w-categorical structures also apply for CSP templates, i.e., structures in a finite language. Finally, we obtain a concrete algebraic criterion which could constitute a description of the delineation between tractability and NP-hardness in the dichotomy conjecture for first-order reducts of finitely bounded homogeneous structures.
Název v anglickém jazyce
WHEN SYMMETRIES ARE NOT ENOUGH: A HIERARCHY OF HARD CONSTRAINT SATISFACTION PROBLEMS
Popis výsledku anglicky
We produce a class of w-categorical structures with finite signature by applying a model-theoretic construction---a refinement of the Hrushovski-enco ding---to w-categorical structures in a possibly infinite signature. We show that the encoded structures retain desirable algebraic properties of the original structures, but that the constraint satisfaction problems (CSPs) associated with these structures can be badly behaved in terms of computational complexity. This method allows us to systematically generate w-categorical templates whose CSPs are complete for a variety of complexity classes of arbitrarily high complexity and w-categorical templates that show that membership in any given complexity class containing AC0 cannot be expressed by a set of identities on the polymorphisms. It moreover enables us to prove that recent results about the relevance of topology on polymorphism clones of w-categorical structures also apply for CSP templates, i.e., structures in a finite language. Finally, we obtain a concrete algebraic criterion which could constitute a description of the delineation between tractability and NP-hardness in the dichotomy conjecture for first-order reducts of finitely bounded homogeneous structures.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-20123S" target="_blank" >GA18-20123S: Rozšíření záběru univerzální algebry</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Computing
ISSN
0097-5397
e-ISSN
1095-7111
Svazek periodika
2022
Číslo periodika v rámci svazku
51
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
39
Strana od-do
175-213
Kód UT WoS článku
000776377400001
EID výsledku v databázi Scopus
2-s2.0-85128646965