Sensitive Instances of the Constraint Satisfaction Problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421069" target="_blank" >RIV/00216208:11320/20:10421069 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.ICALP.2020.110" target="_blank" >https://doi.org/10.4230/LIPIcs.ICALP.2020.110</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2020.110" target="_blank" >10.4230/LIPIcs.ICALP.2020.110</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sensitive Instances of the Constraint Satisfaction Problem
Popis výsledku v původním jazyce
We investigate the impact of modifying the constraining relations of a Constraint Satisfaction Problem (CSP) instance, with a fixed template, on the set of solutions of the instance. More precisely we investigate sensitive instances: an instance of the CSP is called sensitive, if removing any tuple from any constraining relation invalidates some solution of the instance. Equivalently, one could require that every tuple from any one of its constraints extends to a solution of the instance. Clearly, any non-trivial template has instances which are not sensitive. Therefore we follow the direction proposed (in the context of strict width) by Feder and Vardi in [13] and require that only the instances produced by a local consistency checking algorithm are sensitive. In the language of the algebraic approach to the CSP we show that a finite idempotent algebra A has a k + 2 variable near unanimity term operation if and only if any instance that results from running the (k, k + 1)-consistency algorithm on an instance over A2 is sensitive. A version of our result, without idempotency but with the sensitivity condition holding in a variety of algebras, settles a question posed by G. Bergman about systems of projections of algebras that arise from some subalgebra of a finite product of algebras. Our results hold for infinite (albeit in the case of A idempotent) algebras as well and exhibit a surprising similarity to the strict width k condition proposed by Feder and Vardi. Both conditions can be characterized by the existence of a near unanimity operation, but the arities of the operations differ by 1.
Název v anglickém jazyce
Sensitive Instances of the Constraint Satisfaction Problem
Popis výsledku anglicky
We investigate the impact of modifying the constraining relations of a Constraint Satisfaction Problem (CSP) instance, with a fixed template, on the set of solutions of the instance. More precisely we investigate sensitive instances: an instance of the CSP is called sensitive, if removing any tuple from any constraining relation invalidates some solution of the instance. Equivalently, one could require that every tuple from any one of its constraints extends to a solution of the instance. Clearly, any non-trivial template has instances which are not sensitive. Therefore we follow the direction proposed (in the context of strict width) by Feder and Vardi in [13] and require that only the instances produced by a local consistency checking algorithm are sensitive. In the language of the algebraic approach to the CSP we show that a finite idempotent algebra A has a k + 2 variable near unanimity term operation if and only if any instance that results from running the (k, k + 1)-consistency algorithm on an instance over A2 is sensitive. A version of our result, without idempotency but with the sensitivity condition holding in a variety of algebras, settles a question posed by G. Bergman about systems of projections of algebras that arise from some subalgebra of a finite product of algebras. Our results hold for infinite (albeit in the case of A idempotent) algebras as well and exhibit a surprising similarity to the strict width k condition proposed by Feder and Vardi. Both conditions can be characterized by the existence of a near unanimity operation, but the arities of the operations differ by 1.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-20123S" target="_blank" >GA18-20123S: Rozšíření záběru univerzální algebry</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Leibniz International Proceedings in Informatics, LIPIcs
ISBN
978-3-95977-138-2
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
18
Strana od-do
1-18
Název nakladatele
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
Místo vydání
Německo
Místo konání akce
Sarbrücken, Německo
Datum konání akce
8. 7. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—