On flips in planar matchings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423563" target="_blank" >RIV/00216208:11320/20:10423563 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-60440-0_17" target="_blank" >https://doi.org/10.1007/978-3-030-60440-0_17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-60440-0_17" target="_blank" >10.1007/978-3-030-60440-0_17</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On flips in planar matchings
Popis výsledku v původním jazyce
In this paper we investigate the structure of flip graphs on non-crossing perfect matchings in the plane. Consider all non-crossing straight-line perfect matchings on a set of 2n points that are placed equidistantly on the unit circle. The graph Hn has those matchings as vertices, and an edge between any two matchings that differ in replacing two matching edges that span an empty quadrilateral with the other two edges of the quadrilateral, provided that the quadrilateral contains the center of the unit circle. We show that the graph Hn is connected for odd n, but has exponentially many small connected components for even n, which we characterize and count via Catalan and generalized Narayana numbers. For odd n, we also prove that the diameter of Hn is linear in n. Furthermore, we determine the minimum and maximum degree of Hn for all n, and characterize and count the corresponding vertices. Our results imply the non-existence of certain rainbow cycles, and they answer several open questions and conjectures raised in a recent paper by Felsner, Kleist, Mütze, and Sering.
Název v anglickém jazyce
On flips in planar matchings
Popis výsledku anglicky
In this paper we investigate the structure of flip graphs on non-crossing perfect matchings in the plane. Consider all non-crossing straight-line perfect matchings on a set of 2n points that are placed equidistantly on the unit circle. The graph Hn has those matchings as vertices, and an edge between any two matchings that differ in replacing two matching edges that span an empty quadrilateral with the other two edges of the quadrilateral, provided that the quadrilateral contains the center of the unit circle. We show that the graph Hn is connected for odd n, but has exponentially many small connected components for even n, which we characterize and count via Catalan and generalized Narayana numbers. For odd n, we also prove that the diameter of Hn is linear in n. Furthermore, we determine the minimum and maximum degree of Hn for all n, and characterize and count the corresponding vertices. Our results imply the non-existence of certain rainbow cycles, and they answer several open questions and conjectures raised in a recent paper by Felsner, Kleist, Mütze, and Sering.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-08554S" target="_blank" >GA19-08554S: Struktury a algoritmy ve velmi symetrických grafech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science
ISBN
978-3-030-60439-4
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
13
Strana od-do
213-225
Název nakladatele
SPRINGER
Místo vydání
Neuveden
Místo konání akce
Leeds
Datum konání akce
24. 6. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—