On flips in planar matchings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10419981" target="_blank" >RIV/00216208:11320/21:10419981 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=aNpvfvxPqo" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=aNpvfvxPqo</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dam.2020.10.018" target="_blank" >10.1016/j.dam.2020.10.018</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On flips in planar matchings
Popis výsledku v původním jazyce
In this paper we investigate the structure of flip graphs on non-crossing perfect matchings in the plane. Specifically, consider all non-crossing straight-line perfect matchings on a set of 2n points that are placed equidistantly on the unit circle. A flip operation on such a matching replaces two matching edges that span an empty quadrilateral with the other two edges of the quadrilateral, and the flip is called centered if the quadrilateral contains the center of the unit circle. The graph Gn has those matchings as vertices, and an edge between any two matchings that differ in a flip, and it is known to have many interesting properties. In this paper we focus on the spanning subgraph Hn of Gn obtained by taking all edges that correspond to centered flips, omitting edges that correspond to non-centered flips. We show that the graph Hn is connected for odd n, but has exponentially many small connected components for even n, which we characterize and count via Catalan and generalized Narayana numbers. For odd n, we also prove that the diameter of Hn is linear in n. Furthermore, we determine the minimum and maximum degree of Hn for all n, and characterize and count the corresponding vertices. Our results imply the non-existence of certain rainbow cycles in Gn, and they resolve several open questions and conjectures raised in a recent paper by Felsner, Kleist, Mütze, and Sering.
Název v anglickém jazyce
On flips in planar matchings
Popis výsledku anglicky
In this paper we investigate the structure of flip graphs on non-crossing perfect matchings in the plane. Specifically, consider all non-crossing straight-line perfect matchings on a set of 2n points that are placed equidistantly on the unit circle. A flip operation on such a matching replaces two matching edges that span an empty quadrilateral with the other two edges of the quadrilateral, and the flip is called centered if the quadrilateral contains the center of the unit circle. The graph Gn has those matchings as vertices, and an edge between any two matchings that differ in a flip, and it is known to have many interesting properties. In this paper we focus on the spanning subgraph Hn of Gn obtained by taking all edges that correspond to centered flips, omitting edges that correspond to non-centered flips. We show that the graph Hn is connected for odd n, but has exponentially many small connected components for even n, which we characterize and count via Catalan and generalized Narayana numbers. For odd n, we also prove that the diameter of Hn is linear in n. Furthermore, we determine the minimum and maximum degree of Hn for all n, and characterize and count the corresponding vertices. Our results imply the non-existence of certain rainbow cycles in Gn, and they resolve several open questions and conjectures raised in a recent paper by Felsner, Kleist, Mütze, and Sering.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-08554S" target="_blank" >GA19-08554S: Struktury a algoritmy ve velmi symetrických grafech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Applied Mathematics
ISSN
0166-218X
e-ISSN
—
Svazek periodika
neuveden
Číslo periodika v rámci svazku
289
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
19
Strana od-do
427-445
Kód UT WoS článku
000596823800037
EID výsledku v databázi Scopus
2-s2.0-85093840376