Transforming machine translation: a deep learning system reaches news translation quality comparable to human professionals
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10424334" target="_blank" >RIV/00216208:11320/20:10424334 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0k1mY-gfTl" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0k1mY-gfTl</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41467-020-18073-9" target="_blank" >10.1038/s41467-020-18073-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Transforming machine translation: a deep learning system reaches news translation quality comparable to human professionals
Popis výsledku v původním jazyce
The quality of human translation was long thought to be unattainable for computer translation systems. In this study, we present a deep-learning system, CUBBITT, which challenges this view. In a context-aware blind evaluation by human judges, CUBBITT significantly outperformed professional-agency English-to-Czech news translation in preserving text meaning (translation adequacy). While human translation is still rated as more fluent, CUBBITT is shown to be substantially more fluent than previous state-of-the-art systems. Moreover, most participants of a Translation Turing test struggle to distinguish CUBBITT translations from human translations. This work approaches the quality of human translation and even surpasses it in adequacy in certain circumstances. This suggests that deep learning may have the potential to replace humans in applications where conservation of meaning is the primary aim.
Název v anglickém jazyce
Transforming machine translation: a deep learning system reaches news translation quality comparable to human professionals
Popis výsledku anglicky
The quality of human translation was long thought to be unattainable for computer translation systems. In this study, we present a deep-learning system, CUBBITT, which challenges this view. In a context-aware blind evaluation by human judges, CUBBITT significantly outperformed professional-agency English-to-Czech news translation in preserving text meaning (translation adequacy). While human translation is still rated as more fluent, CUBBITT is shown to be substantially more fluent than previous state-of-the-art systems. Moreover, most participants of a Translation Turing test struggle to distinguish CUBBITT translations from human translations. This work approaches the quality of human translation and even surpasses it in adequacy in certain circumstances. This suggests that deep learning may have the potential to replace humans in applications where conservation of meaning is the primary aim.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nature Communications
ISSN
2041-1723
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
4381
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
000569891500008
EID výsledku v databázi Scopus
2-s2.0-85090052524