LSCP: Enhanced Large Scale Colloquial Persian Language Understanding
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10424427" target="_blank" >RIV/00216208:11320/20:10424427 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aclweb.org/anthology/2020.lrec-1.776" target="_blank" >https://www.aclweb.org/anthology/2020.lrec-1.776</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
LSCP: Enhanced Large Scale Colloquial Persian Language Understanding
Popis výsledku v původním jazyce
Language recognition has been significantly advanced in recent years by means of modern machine learning methods such as deep learning and benchmarks with rich annotations. However, research is still limited in low-resource formal languages. This consists of a significant gap in describing the colloquial language especially for low-resourced ones such as Persian. In order to target this gap for low resource languages, we propose a "Large Scale Colloquial Persian Dataset" (LSCP). LSCP is hierarchically organized in a semantic taxonomy that focuses on multi-task informal Persian language understanding as a comprehensive problem. This encompasses the recognition of multiple semantic aspects in the human-level sentences, which naturally captures from the real-world sentences. We believe that further investigations and processing, as well as the application of novel algorithms and methods, can strengthen enriching computerized understanding and processing of low resource languages. The proposed corpus cons
Název v anglickém jazyce
LSCP: Enhanced Large Scale Colloquial Persian Language Understanding
Popis výsledku anglicky
Language recognition has been significantly advanced in recent years by means of modern machine learning methods such as deep learning and benchmarks with rich annotations. However, research is still limited in low-resource formal languages. This consists of a significant gap in describing the colloquial language especially for low-resourced ones such as Persian. In order to target this gap for low resource languages, we propose a "Large Scale Colloquial Persian Dataset" (LSCP). LSCP is hierarchically organized in a semantic taxonomy that focuses on multi-task informal Persian language understanding as a comprehensive problem. This encompasses the recognition of multiple semantic aspects in the human-level sentences, which naturally captures from the real-world sentences. We believe that further investigations and processing, as well as the application of novel algorithms and methods, can strengthen enriching computerized understanding and processing of low resource languages. The proposed corpus cons
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-26934X" target="_blank" >GX19-26934X: Neuronové reprezentace v multimodálním a mnohojazyčném modelování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 12th International Conference on Language Resources and Evaluation (LREC 2020)
ISBN
979-10-95546-34-4
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
6323-6327
Název nakladatele
European Language Resources Association
Místo vydání
Marseille, France
Místo konání akce
Marseille, France
Datum konání akce
11. 5. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—