On the Exploration of English to Urdu Machine Translation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10426969" target="_blank" >RIV/00216208:11320/20:10426969 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aclweb.org/anthology/2020.sltu-1.40" target="_blank" >https://www.aclweb.org/anthology/2020.sltu-1.40</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Exploration of English to Urdu Machine Translation
Popis výsledku v původním jazyce
Machine Translation is the inevitable technology to reduce communication barriers in today's world. It has made substantial progress in recent years and is being widely used in commercial as well as non-profit sectors. Such is only the case for European and other high resource languages. For English-Urdu language pair, the technology is in its infancy stage due to scarcity of resources. Present research is an important milestone in English-Urdu machine translation, as we present results for four major domains including Biomedical, Religious, Technological and General using Statistical and Neural Machine Translation. We performed series of experiments in attempts to optimize the performance of each system and also to study the impact of data sources on the systems. Finally, we established a comparison of the data sources and the effect of language model size on statistical machine translation performance.
Název v anglickém jazyce
On the Exploration of English to Urdu Machine Translation
Popis výsledku anglicky
Machine Translation is the inevitable technology to reduce communication barriers in today's world. It has made substantial progress in recent years and is being widely used in commercial as well as non-profit sectors. Such is only the case for European and other high resource languages. For English-Urdu language pair, the technology is in its infancy stage due to scarcity of resources. Present research is an important milestone in English-Urdu machine translation, as we present results for four major domains including Biomedical, Religious, Technological and General using Statistical and Neural Machine Translation. We performed series of experiments in attempts to optimize the performance of each system and also to study the impact of data sources on the systems. Finally, we established a comparison of the data sources and the effect of language model size on statistical machine translation performance.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů