Evaluation of scenario reduction algorithms with nested distance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10438220" target="_blank" >RIV/00216208:11320/20:10438220 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LKIqvCHdf3" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LKIqvCHdf3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10287-020-00375-4" target="_blank" >10.1007/s10287-020-00375-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of scenario reduction algorithms with nested distance
Popis výsledku v původním jazyce
Multistage stochastic optimization is used to solve many real-life problems where decisions are taken at multiple times. Such problems need the representation of stochastic processes, which are usually approximated by scenario trees. In this article, we implement seven scenario reduction algorithms: three based on random extraction, namedRandom, and four based on specific distance measures, named Distance-based. Three of the latter are well known in literature while the fourth is a new approach, namely nodal clustering. We compare all the algorithms in terms of computational cost and information cost. The computational cost is measured by the time needed for the reduction, while the information cost is measured by the nested distance between the original and the reduced tree. Moreover, we also formulate and solve a multistage stochastic portfolio selection problem to measure the distance between the optimal solutions and between the optimal objective values of the original and the reduced tree.
Název v anglickém jazyce
Evaluation of scenario reduction algorithms with nested distance
Popis výsledku anglicky
Multistage stochastic optimization is used to solve many real-life problems where decisions are taken at multiple times. Such problems need the representation of stochastic processes, which are usually approximated by scenario trees. In this article, we implement seven scenario reduction algorithms: three based on random extraction, namedRandom, and four based on specific distance measures, named Distance-based. Three of the latter are well known in literature while the fourth is a new approach, namely nodal clustering. We compare all the algorithms in terms of computational cost and information cost. The computational cost is measured by the time needed for the reduction, while the information cost is measured by the nested distance between the original and the reduced tree. Moreover, we also formulate and solve a multistage stochastic portfolio selection problem to measure the distance between the optimal solutions and between the optimal objective values of the original and the reduced tree.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-05631S" target="_blank" >GA18-05631S: Stochastické optimalizační úlohy s endogenní nejistotou</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Management Science
ISSN
1619-697X
e-ISSN
—
Svazek periodika
17
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
35
Strana od-do
241-275
Kód UT WoS článku
000558873000001
EID výsledku v databázi Scopus
2-s2.0-85089288523