MULTISTAGE MULTIVARIATE NESTED DISTANCE: AN EMPIRICAL ANALYSIS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10401759" target="_blank" >RIV/00216208:11320/18:10401759 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ld1qo9ueCM" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ld1qo9ueCM</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14736/kyb-2018-6-1184" target="_blank" >10.14736/kyb-2018-6-1184</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MULTISTAGE MULTIVARIATE NESTED DISTANCE: AN EMPIRICAL ANALYSIS
Popis výsledku v původním jazyce
Multistage stochastic optimization requires the definition and the generation of a discrete stochastic tree that represents the evolution of the uncertain parameters in time and space. The dimension of the tree is the result of a trade-off between the adaptability to the original probability distribution and the computational tractability. Moreover, the discrete approximation of a continuous random variable is not unique. The concept of the best discrete approximation has been widely explored and many enhancements to adjust and fix a stochastic tree in order to represent as well as possible the real distribution have been proposed. Yet, often, the same generation algorithm can produce multiple trees to represent the random variable. Therefore, the recent literature investigates the concept of distance between trees which are candidate to be adopted as stochastic framework for the multistage model optimization. The contribution of this paper is to compute the nested distance between a large set of multistage and multivariate trees and, for a sample of basic financial problems, to empirically show the positive relation between the tree distance and the distance of the corresponding optimal solutions, and between the tree distance and the optimal objective values. Moreover, we compute a lower bound for the Lipschitz constant that bounds the optimal value distance.
Název v anglickém jazyce
MULTISTAGE MULTIVARIATE NESTED DISTANCE: AN EMPIRICAL ANALYSIS
Popis výsledku anglicky
Multistage stochastic optimization requires the definition and the generation of a discrete stochastic tree that represents the evolution of the uncertain parameters in time and space. The dimension of the tree is the result of a trade-off between the adaptability to the original probability distribution and the computational tractability. Moreover, the discrete approximation of a continuous random variable is not unique. The concept of the best discrete approximation has been widely explored and many enhancements to adjust and fix a stochastic tree in order to represent as well as possible the real distribution have been proposed. Yet, often, the same generation algorithm can produce multiple trees to represent the random variable. Therefore, the recent literature investigates the concept of distance between trees which are candidate to be adopted as stochastic framework for the multistage model optimization. The contribution of this paper is to compute the nested distance between a large set of multistage and multivariate trees and, for a sample of basic financial problems, to empirically show the positive relation between the tree distance and the distance of the corresponding optimal solutions, and between the tree distance and the optimal objective values. Moreover, we compute a lower bound for the Lipschitz constant that bounds the optimal value distance.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ18-01781Y" target="_blank" >GJ18-01781Y: Dynamické a granulární rezervování škod s využitím kopulí - DaGLoRCo</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Kybernetika
ISSN
0023-5954
e-ISSN
—
Svazek periodika
54
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
17
Strana od-do
1184-1200
Kód UT WoS článku
000457070200007
EID výsledku v databázi Scopus
2-s2.0-85064192757