Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Nearly Hyperharmonic Functions are Infima of Excessive Functions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10439109" target="_blank" >RIV/00216208:11320/20:10439109 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=OiaBIdHCmq" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=OiaBIdHCmq</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10959-019-00927-8" target="_blank" >10.1007/s10959-019-00927-8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Nearly Hyperharmonic Functions are Infima of Excessive Functions

  • Popis výsledku v původním jazyce

    Let X be a Hunt process on a locally compact space X such that the set epsilon(X) of its Borel measurable excessive functions separates points, every function in epsilon(X) is the supremum of its continuous minorants in epsilon(X), and there are strictly positive continuous functions v, w is an element of epsilon(X) such that v/w vanishes at infinity. A numerical function u = 0 on X is said to be nearly hyperharmonic, if integral* u omicron X-tau V dP(x) &lt;= u(x) for every x is an element of X and every relatively compact open neighborhood V of x, where tau(V) denotes the exit time of V. For every such function u, its lower semicontinuous regularization (u) over cap is excessive. The main purpose of the paper is to give a short, complete and understandable proof for the statement that u = inf{w is an element of epsilon(X) : w &gt;= u} for every Borel measurable nearly hyperharmonic function on X. Principal novelties of our approach are the following: 1. A quick reduction to the special case, where starting at x is an element of X with u(x) &lt; infinity the expected number of times the process X visits the set of points y. X, where &lt;(u)over cap&gt;(y) := lim inf(z) -&gt; y u(z) &lt; u(y), is finite. 2. The consequent use of (only) the strong Markov property. 3. The proof of the equality integral u d mu = inf{integral w d mu: w is an element of epsilon(X), w &gt;= u} not only for measures mu satisfying integral w d mu &lt; infinity for some excessive majorant w of u, but also for all finite measures. At the end, the measurability assumption on u is weakened considerably.

  • Název v anglickém jazyce

    Nearly Hyperharmonic Functions are Infima of Excessive Functions

  • Popis výsledku anglicky

    Let X be a Hunt process on a locally compact space X such that the set epsilon(X) of its Borel measurable excessive functions separates points, every function in epsilon(X) is the supremum of its continuous minorants in epsilon(X), and there are strictly positive continuous functions v, w is an element of epsilon(X) such that v/w vanishes at infinity. A numerical function u = 0 on X is said to be nearly hyperharmonic, if integral* u omicron X-tau V dP(x) &lt;= u(x) for every x is an element of X and every relatively compact open neighborhood V of x, where tau(V) denotes the exit time of V. For every such function u, its lower semicontinuous regularization (u) over cap is excessive. The main purpose of the paper is to give a short, complete and understandable proof for the statement that u = inf{w is an element of epsilon(X) : w &gt;= u} for every Borel measurable nearly hyperharmonic function on X. Principal novelties of our approach are the following: 1. A quick reduction to the special case, where starting at x is an element of X with u(x) &lt; infinity the expected number of times the process X visits the set of points y. X, where &lt;(u)over cap&gt;(y) := lim inf(z) -&gt; y u(z) &lt; u(y), is finite. 2. The consequent use of (only) the strong Markov property. 3. The proof of the equality integral u d mu = inf{integral w d mu: w is an element of epsilon(X), w &gt;= u} not only for measures mu satisfying integral w d mu &lt; infinity for some excessive majorant w of u, but also for all finite measures. At the end, the measurability assumption on u is weakened considerably.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Theoretical Probability

  • ISSN

    0894-9840

  • e-ISSN

  • Svazek periodika

    33

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    BE - Belgické království

  • Počet stran výsledku

    17

  • Strana od-do

    1613-1629

  • Kód UT WoS článku

    000550905100014

  • EID výsledku v databázi Scopus

    2-s2.0-85068096128