Nearly Hyperharmonic Functions are Infima of Excessive Functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10439109" target="_blank" >RIV/00216208:11320/20:10439109 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=OiaBIdHCmq" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=OiaBIdHCmq</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10959-019-00927-8" target="_blank" >10.1007/s10959-019-00927-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nearly Hyperharmonic Functions are Infima of Excessive Functions
Popis výsledku v původním jazyce
Let X be a Hunt process on a locally compact space X such that the set epsilon(X) of its Borel measurable excessive functions separates points, every function in epsilon(X) is the supremum of its continuous minorants in epsilon(X), and there are strictly positive continuous functions v, w is an element of epsilon(X) such that v/w vanishes at infinity. A numerical function u = 0 on X is said to be nearly hyperharmonic, if integral* u omicron X-tau V dP(x) <= u(x) for every x is an element of X and every relatively compact open neighborhood V of x, where tau(V) denotes the exit time of V. For every such function u, its lower semicontinuous regularization (u) over cap is excessive. The main purpose of the paper is to give a short, complete and understandable proof for the statement that u = inf{w is an element of epsilon(X) : w >= u} for every Borel measurable nearly hyperharmonic function on X. Principal novelties of our approach are the following: 1. A quick reduction to the special case, where starting at x is an element of X with u(x) < infinity the expected number of times the process X visits the set of points y. X, where <(u)over cap>(y) := lim inf(z) -> y u(z) < u(y), is finite. 2. The consequent use of (only) the strong Markov property. 3. The proof of the equality integral u d mu = inf{integral w d mu: w is an element of epsilon(X), w >= u} not only for measures mu satisfying integral w d mu < infinity for some excessive majorant w of u, but also for all finite measures. At the end, the measurability assumption on u is weakened considerably.
Název v anglickém jazyce
Nearly Hyperharmonic Functions are Infima of Excessive Functions
Popis výsledku anglicky
Let X be a Hunt process on a locally compact space X such that the set epsilon(X) of its Borel measurable excessive functions separates points, every function in epsilon(X) is the supremum of its continuous minorants in epsilon(X), and there are strictly positive continuous functions v, w is an element of epsilon(X) such that v/w vanishes at infinity. A numerical function u = 0 on X is said to be nearly hyperharmonic, if integral* u omicron X-tau V dP(x) <= u(x) for every x is an element of X and every relatively compact open neighborhood V of x, where tau(V) denotes the exit time of V. For every such function u, its lower semicontinuous regularization (u) over cap is excessive. The main purpose of the paper is to give a short, complete and understandable proof for the statement that u = inf{w is an element of epsilon(X) : w >= u} for every Borel measurable nearly hyperharmonic function on X. Principal novelties of our approach are the following: 1. A quick reduction to the special case, where starting at x is an element of X with u(x) < infinity the expected number of times the process X visits the set of points y. X, where <(u)over cap>(y) := lim inf(z) -> y u(z) < u(y), is finite. 2. The consequent use of (only) the strong Markov property. 3. The proof of the equality integral u d mu = inf{integral w d mu: w is an element of epsilon(X), w >= u} not only for measures mu satisfying integral w d mu < infinity for some excessive majorant w of u, but also for all finite measures. At the end, the measurability assumption on u is weakened considerably.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Theoretical Probability
ISSN
0894-9840
e-ISSN
—
Svazek periodika
33
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
BE - Belgické království
Počet stran výsledku
17
Strana od-do
1613-1629
Kód UT WoS článku
000550905100014
EID výsledku v databázi Scopus
2-s2.0-85068096128