Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Regularity Results for Two Standard Models in Elasto-Perfect-Plasticity Theory with Hardening

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10435823" target="_blank" >RIV/00216208:11320/21:10435823 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=tLP4hhZKz1" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=tLP4hhZKz1</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Regularity Results for Two Standard Models in Elasto-Perfect-Plasticity Theory with Hardening

  • Popis výsledku v původním jazyce

    We consider two most studied standard models in the theory of elasto-plasticity with hardening in arbitrary dimension d &gt;= 2, namely, the kinematic hardening and the isotropic hardening problem. While the existence and uniqueness of the solution is very well known, the optimal regularity up to the boundary remains an open problem. Here, we show that in the interior we have Sobolev regularity for the stress and hardening while for their time derivatives we have the &quot;half&quot; derivative with the spatial and time variable. This was well known for the limiting problem but we show that these estimates are uniform and independent of the order of approximation. The main novelty consist of estimates near the boundary. We show that for the stress and the hardening parameter, we control tangential derivative in the Lebesgue space L-2, and for time derivative of the stress and the hardening we control the &quot;half&quot; time derivative and also spatial tangential derivative. Last, for the normal derivative, we show that the stress and the hardening have the 3/5 derivative with respect to the normal and for the time derivative of the stress and the hardening we show they have the 1/5 derivative with respect to the normal direction, provided we consider the kinematic hardening or near the Dirichlet boundary. These estimates are independent of the dimension. In case, we consider the isotropic hardening near the Neumann boundary we shall obtain W-alpha,W-2 regularity for the stress and the hardening with some alpha &gt; 1/2 depending on the dimension and W-beta,W-2 with some beta &gt; 1/6 for the time derivative of the stress and the hardening. Finally, in case of kinematic hardening the same regularity estimate holds true also for the velocity gradient.

  • Název v anglickém jazyce

    Regularity Results for Two Standard Models in Elasto-Perfect-Plasticity Theory with Hardening

  • Popis výsledku anglicky

    We consider two most studied standard models in the theory of elasto-plasticity with hardening in arbitrary dimension d &gt;= 2, namely, the kinematic hardening and the isotropic hardening problem. While the existence and uniqueness of the solution is very well known, the optimal regularity up to the boundary remains an open problem. Here, we show that in the interior we have Sobolev regularity for the stress and hardening while for their time derivatives we have the &quot;half&quot; derivative with the spatial and time variable. This was well known for the limiting problem but we show that these estimates are uniform and independent of the order of approximation. The main novelty consist of estimates near the boundary. We show that for the stress and the hardening parameter, we control tangential derivative in the Lebesgue space L-2, and for time derivative of the stress and the hardening we control the &quot;half&quot; time derivative and also spatial tangential derivative. Last, for the normal derivative, we show that the stress and the hardening have the 3/5 derivative with respect to the normal and for the time derivative of the stress and the hardening we show they have the 1/5 derivative with respect to the normal direction, provided we consider the kinematic hardening or near the Dirichlet boundary. These estimates are independent of the dimension. In case, we consider the isotropic hardening near the Neumann boundary we shall obtain W-alpha,W-2 regularity for the stress and the hardening with some alpha &gt; 1/2 depending on the dimension and W-beta,W-2 with some beta &gt; 1/6 for the time derivative of the stress and the hardening. Finally, in case of kinematic hardening the same regularity estimate holds true also for the velocity gradient.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX20-11027X" target="_blank" >GX20-11027X: Matematická analýza parciálních diferenciálních rovnic popisujících silně nerovnovážné stavy v otevřených systémech termodynamiky kontinua</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Convex Analysis

  • ISSN

    0944-6532

  • e-ISSN

  • Svazek periodika

    28

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    34

  • Strana od-do

    395-428

  • Kód UT WoS článku

    000661128900006

  • EID výsledku v databázi Scopus

    2-s2.0-85099648941