Regularity Results for Two Standard Models in Elasto-Perfect-Plasticity Theory with Hardening
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10435823" target="_blank" >RIV/00216208:11320/21:10435823 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=tLP4hhZKz1" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=tLP4hhZKz1</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Regularity Results for Two Standard Models in Elasto-Perfect-Plasticity Theory with Hardening
Popis výsledku v původním jazyce
We consider two most studied standard models in the theory of elasto-plasticity with hardening in arbitrary dimension d >= 2, namely, the kinematic hardening and the isotropic hardening problem. While the existence and uniqueness of the solution is very well known, the optimal regularity up to the boundary remains an open problem. Here, we show that in the interior we have Sobolev regularity for the stress and hardening while for their time derivatives we have the "half" derivative with the spatial and time variable. This was well known for the limiting problem but we show that these estimates are uniform and independent of the order of approximation. The main novelty consist of estimates near the boundary. We show that for the stress and the hardening parameter, we control tangential derivative in the Lebesgue space L-2, and for time derivative of the stress and the hardening we control the "half" time derivative and also spatial tangential derivative. Last, for the normal derivative, we show that the stress and the hardening have the 3/5 derivative with respect to the normal and for the time derivative of the stress and the hardening we show they have the 1/5 derivative with respect to the normal direction, provided we consider the kinematic hardening or near the Dirichlet boundary. These estimates are independent of the dimension. In case, we consider the isotropic hardening near the Neumann boundary we shall obtain W-alpha,W-2 regularity for the stress and the hardening with some alpha > 1/2 depending on the dimension and W-beta,W-2 with some beta > 1/6 for the time derivative of the stress and the hardening. Finally, in case of kinematic hardening the same regularity estimate holds true also for the velocity gradient.
Název v anglickém jazyce
Regularity Results for Two Standard Models in Elasto-Perfect-Plasticity Theory with Hardening
Popis výsledku anglicky
We consider two most studied standard models in the theory of elasto-plasticity with hardening in arbitrary dimension d >= 2, namely, the kinematic hardening and the isotropic hardening problem. While the existence and uniqueness of the solution is very well known, the optimal regularity up to the boundary remains an open problem. Here, we show that in the interior we have Sobolev regularity for the stress and hardening while for their time derivatives we have the "half" derivative with the spatial and time variable. This was well known for the limiting problem but we show that these estimates are uniform and independent of the order of approximation. The main novelty consist of estimates near the boundary. We show that for the stress and the hardening parameter, we control tangential derivative in the Lebesgue space L-2, and for time derivative of the stress and the hardening we control the "half" time derivative and also spatial tangential derivative. Last, for the normal derivative, we show that the stress and the hardening have the 3/5 derivative with respect to the normal and for the time derivative of the stress and the hardening we show they have the 1/5 derivative with respect to the normal direction, provided we consider the kinematic hardening or near the Dirichlet boundary. These estimates are independent of the dimension. In case, we consider the isotropic hardening near the Neumann boundary we shall obtain W-alpha,W-2 regularity for the stress and the hardening with some alpha > 1/2 depending on the dimension and W-beta,W-2 with some beta > 1/6 for the time derivative of the stress and the hardening. Finally, in case of kinematic hardening the same regularity estimate holds true also for the velocity gradient.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GX20-11027X" target="_blank" >GX20-11027X: Matematická analýza parciálních diferenciálních rovnic popisujících silně nerovnovážné stavy v otevřených systémech termodynamiky kontinua</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Convex Analysis
ISSN
0944-6532
e-ISSN
—
Svazek periodika
28
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
34
Strana od-do
395-428
Kód UT WoS článku
000661128900006
EID výsledku v databázi Scopus
2-s2.0-85099648941