When Is Data Processing Under Interval and Fuzzy Uncertainty Feasible: What if Few Inputs Interact? Does Feasibility Depend on How We Describe Interaction?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437057" target="_blank" >RIV/00216208:11320/21:10437057 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-47124-8_8" target="_blank" >https://doi.org/10.1007/978-3-030-47124-8_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-47124-8_8" target="_blank" >10.1007/978-3-030-47124-8_8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
When Is Data Processing Under Interval and Fuzzy Uncertainty Feasible: What if Few Inputs Interact? Does Feasibility Depend on How We Describe Interaction?
Popis výsledku v původním jazyce
It is known that, in general, data processing under interval and fuzzy uncertainty is NP-hard-which means that, unless P = NP, no feasible algorithm is possible for computing the accuracy of the result of data processing. It is also known that the corresponding problem becomes feasible if the inputs do not interact with each other, i.e., if the data processing algorithm computes the sum of n functions, each depending on only one of the n inputs. In general, inputs and interact. If we take into account all possible interactions, and we use bilinear functions to describe this interaction, we get an NP-hard problem. This raises two natural questions: what if only a few inputs interact? What if the interaction is described by some other functions? In this paper, we show that the problem remains NP-hard if we use different formulas to describe the inputs' interaction, and it becomes feasible if we only have interacting inputs-but remains NP-hard if the number of inputs is for any. (C) 2021, Springer Nature Switzerland AG.
Název v anglickém jazyce
When Is Data Processing Under Interval and Fuzzy Uncertainty Feasible: What if Few Inputs Interact? Does Feasibility Depend on How We Describe Interaction?
Popis výsledku anglicky
It is known that, in general, data processing under interval and fuzzy uncertainty is NP-hard-which means that, unless P = NP, no feasible algorithm is possible for computing the accuracy of the result of data processing. It is also known that the corresponding problem becomes feasible if the inputs do not interact with each other, i.e., if the data processing algorithm computes the sum of n functions, each depending on only one of the n inputs. In general, inputs and interact. If we take into account all possible interactions, and we use bilinear functions to describe this interaction, we get an NP-hard problem. This raises two natural questions: what if only a few inputs interact? What if the interaction is described by some other functions? In this paper, we show that the problem remains NP-hard if we use different formulas to describe the inputs' interaction, and it becomes feasible if we only have interacting inputs-but remains NP-hard if the number of inputs is for any. (C) 2021, Springer Nature Switzerland AG.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-04735S" target="_blank" >GA18-04735S: Nové přístupy pro relaxační a aproximační techniky v deterministické globální optimalizaci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Studies in Fuzziness and Soft Computing
ISBN
978-3-030-47124-8
Počet stran výsledku
10
Strana od-do
91-100
Počet stran knihy
576
Název nakladatele
Springer
Místo vydání
Cham
Kód UT WoS kapitoly
—