PARAMETERIZED APPROXIMATION SCHEMES FOR STEINER TREES WITH SMALL NUMBER OF STEINER VERTICES
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437488" target="_blank" >RIV/00216208:11320/21:10437488 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/21:00349869
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=MpXW6cCZYS" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=MpXW6cCZYS</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/18M1209489" target="_blank" >10.1137/18M1209489</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
PARAMETERIZED APPROXIMATION SCHEMES FOR STEINER TREES WITH SMALL NUMBER OF STEINER VERTICES
Popis výsledku v původním jazyce
We study the Steiner Tree problem, in which a set of terminal vertices needs to be connected in the cheapest possible way in an edge-weighted graph. This problem has been extensively studied from the viewpoint of approximation and also parameterization. In particular, on one hand Steiner Tree is known to be APX-hard, and W[2]-hard on the other, if parameterized by the number of nonterminals (Steiner vertices) in the optimum solution. In contrast to this, we give an efficient parameterized approximation scheme (EPAS), which circumvents both hardness results. Moreover, our methods imply the existence of a polynomial size approximate kernelization scheme (PSAKS) for the considered parameter. We further study the parameterized approximability of other variants of Steiner Tree, such as Directed Steiner Tree and Steiner Forest. For none of these is an EPAS likely to exist for the studied parameter. For Steiner Forest an easy observation shows that the problem is APX-hard, even if the input graph contains no Steiner vertices. For Directed Steiner Tree we prove that approximating within any function of the studied parameter is W[1]-hard. Nevertheless, we show that an EPAS exists for Unweighted Directed Steiner Tree, but a PSAKS does not. We also prove that there is an EPAS and a PSAKS for Steiner Forest if in addition to the number of Steiner vertices, the number of connected components of an optimal solution is considered to be a parameter.
Název v anglickém jazyce
PARAMETERIZED APPROXIMATION SCHEMES FOR STEINER TREES WITH SMALL NUMBER OF STEINER VERTICES
Popis výsledku anglicky
We study the Steiner Tree problem, in which a set of terminal vertices needs to be connected in the cheapest possible way in an edge-weighted graph. This problem has been extensively studied from the viewpoint of approximation and also parameterization. In particular, on one hand Steiner Tree is known to be APX-hard, and W[2]-hard on the other, if parameterized by the number of nonterminals (Steiner vertices) in the optimum solution. In contrast to this, we give an efficient parameterized approximation scheme (EPAS), which circumvents both hardness results. Moreover, our methods imply the existence of a polynomial size approximate kernelization scheme (PSAKS) for the considered parameter. We further study the parameterized approximability of other variants of Steiner Tree, such as Directed Steiner Tree and Steiner Forest. For none of these is an EPAS likely to exist for the studied parameter. For Steiner Forest an easy observation shows that the problem is APX-hard, even if the input graph contains no Steiner vertices. For Directed Steiner Tree we prove that approximating within any function of the studied parameter is W[1]-hard. Nevertheless, we show that an EPAS exists for Unweighted Directed Steiner Tree, but a PSAKS does not. We also prove that there is an EPAS and a PSAKS for Steiner Forest if in addition to the number of Steiner vertices, the number of connected components of an optimal solution is considered to be a parameter.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Discrete Mathematics
ISSN
0895-4801
e-ISSN
—
Svazek periodika
35
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
29
Strana od-do
546-574
Kód UT WoS článku
000636039400029
EID výsledku v databázi Scopus
2-s2.0-85105114337