Relative error streaming quantiles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438016" target="_blank" >RIV/00216208:11320/21:10438016 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3452021.3458323" target="_blank" >https://doi.org/10.1145/3452021.3458323</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3452021.3458323" target="_blank" >10.1145/3452021.3458323</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Relative error streaming quantiles
Popis výsledku v původním jazyce
Approximating ranks, quantiles, and distributions over streaming data is a central task in data analysis and monitoring. Given a stream of n items from a data universe U equipped with a total order, the task is to compute a sketch (data structure) of size poly (log(n), 1/ϵ). Given the sketch and a query item y in U, one should be able to approximate its rank in the stream, i.e., the number of stream elements smaller than or equal to y. Most works to date focused on additive ϵ n error approximation, culminating in the KLL sketch that achieved optimal asymptotic behavior. This paper investigates multiplicative (1+-ϵ)-error approximations to the rank. Practical motivation for multiplicative error stems from demands to understand the tails of distributions, and hence for sketches to be more accurate near extreme values. The most space-efficient algorithms due to prior work store either O(log(ϵ^2 n) / ϵ^2) or O(log^3(ϵ n) / ϵ) universe items. This paper presents a randomized algorithm storing O(log^{1.5} (ϵ n)/ϵ) items, which is within an O(sqrt{log(ϵ n)}) factor of optimal. The algorithm does not require prior knowledge of the stream length and is fully mergeable, rendering it suitable for parallel and distributed computing environments. (C) 2021 ACM.
Název v anglickém jazyce
Relative error streaming quantiles
Popis výsledku anglicky
Approximating ranks, quantiles, and distributions over streaming data is a central task in data analysis and monitoring. Given a stream of n items from a data universe U equipped with a total order, the task is to compute a sketch (data structure) of size poly (log(n), 1/ϵ). Given the sketch and a query item y in U, one should be able to approximate its rank in the stream, i.e., the number of stream elements smaller than or equal to y. Most works to date focused on additive ϵ n error approximation, culminating in the KLL sketch that achieved optimal asymptotic behavior. This paper investigates multiplicative (1+-ϵ)-error approximations to the rank. Practical motivation for multiplicative error stems from demands to understand the tails of distributions, and hence for sketches to be more accurate near extreme values. The most space-efficient algorithms due to prior work store either O(log(ϵ^2 n) / ϵ^2) or O(log^3(ϵ n) / ϵ) universe items. This paper presents a randomized algorithm storing O(log^{1.5} (ϵ n)/ϵ) items, which is within an O(sqrt{log(ϵ n)}) factor of optimal. The algorithm does not require prior knowledge of the stream length and is fully mergeable, rendering it suitable for parallel and distributed computing environments. (C) 2021 ACM.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
ISBN
978-1-4503-8381-3
ISSN
—
e-ISSN
—
Počet stran výsledku
13
Strana od-do
96-108
Název nakladatele
Association for Computing Machinery
Místo vydání
Neuveden
Místo konání akce
Virtual (Xi'an, Shaanxi, China)
Datum konání akce
20. 6. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—