Relative Error Streaming Quantiles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475244" target="_blank" >RIV/00216208:11320/23:10475244 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=JDxgW_EUIg" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=JDxgW_EUIg</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3617891" target="_blank" >10.1145/3617891</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Relative Error Streaming Quantiles
Popis výsledku v původním jazyce
Estimating ranks, quantiles, and distributions over streaming data is a central task in data analysis and monitoring. Given a stream of n items from a data universe equipped with a total order, the task is to compute a sketch (data structure) of size polylogarithmic in n. Given the sketch and a query item y, one should be able to approximate its rank in the stream, i.e., the number of stream elements smaller than or equal to y. Most works to date focused on additive en error approximation, culminating in the KLL sketch that achieved optimal asymptotic behavior. This article investigates multiplicative (1 +/- epsilon)-error approximations to the rank. Practical motivation for multiplicative error stems from demands to understand the tails of distributions, and hence for sketches to be more accurate near extreme values. The most space-efficient algorithms due to prior work store either O(log(epsilon(2)n)/epsilon 2) or O(log(3) (epsilon n)/epsilon) universe items. We present a randomized sketch storing O(log(1.5) (epsilon n)/epsilon) items that can (1 +/- epsilon)-approximate the rank of each universe item with high constant probability; this space bound is within an O(root log(epsilon n)) factor of optimal. Our algorithm does not require prior knowledge of the stream length and is fully mergeable, rendering it suitable for parallel and distributed computing environments.
Název v anglickém jazyce
Relative Error Streaming Quantiles
Popis výsledku anglicky
Estimating ranks, quantiles, and distributions over streaming data is a central task in data analysis and monitoring. Given a stream of n items from a data universe equipped with a total order, the task is to compute a sketch (data structure) of size polylogarithmic in n. Given the sketch and a query item y, one should be able to approximate its rank in the stream, i.e., the number of stream elements smaller than or equal to y. Most works to date focused on additive en error approximation, culminating in the KLL sketch that achieved optimal asymptotic behavior. This article investigates multiplicative (1 +/- epsilon)-error approximations to the rank. Practical motivation for multiplicative error stems from demands to understand the tails of distributions, and hence for sketches to be more accurate near extreme values. The most space-efficient algorithms due to prior work store either O(log(epsilon(2)n)/epsilon 2) or O(log(3) (epsilon n)/epsilon) universe items. We present a randomized sketch storing O(log(1.5) (epsilon n)/epsilon) items that can (1 +/- epsilon)-approximate the rank of each universe item with high constant probability; this space bound is within an O(root log(epsilon n)) factor of optimal. Our algorithm does not require prior knowledge of the stream length and is fully mergeable, rendering it suitable for parallel and distributed computing environments.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the ACM
ISSN
0004-5411
e-ISSN
1557-735X
Svazek periodika
70
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
48
Strana od-do
30
Kód UT WoS článku
001091490700003
EID výsledku v databázi Scopus
—