A Ramsey variant of the Brown-Erdős-Sós conjecture
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438308" target="_blank" >RIV/00216208:11320/21:10438308 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=YUN4DJDPg0" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=YUN4DJDPg0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/blms.12510" target="_blank" >10.1112/blms.12510</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Ramsey variant of the Brown-Erdős-Sós conjecture
Popis výsledku v původním jazyce
An (Formula presented.) -uniform hypergraph ((Formula presented.) -graph for short) is called linear if every pair of vertices belongs to at most one edge. A linear (Formula presented.) -graph is complete if every pair of vertices is in exactly one edge. The famous Brown-Erdős-Sós conjecture states that for every fixed (Formula presented.) and (Formula presented.), every linear (Formula presented.) -graph with (Formula presented.) edges contains (Formula presented.) edges spanned by at most (Formula presented.) vertices. As an intermediate step towards this conjecture, Conlon and Nenadov recently suggested to prove its natural Ramsey relaxation. Namely, that for every fixed (Formula presented.), (Formula presented.) and (Formula presented.), in every (Formula presented.) -colouring of a complete linear (Formula presented.) -graph, one can find (Formula presented.) monochromatic edges spanned by at most (Formula presented.) vertices. We prove that this Ramsey version of the conjecture holds under the additional assumption that (Formula presented.), and we show that for (Formula presented.) it holds for all (Formula presented.).
Název v anglickém jazyce
A Ramsey variant of the Brown-Erdős-Sós conjecture
Popis výsledku anglicky
An (Formula presented.) -uniform hypergraph ((Formula presented.) -graph for short) is called linear if every pair of vertices belongs to at most one edge. A linear (Formula presented.) -graph is complete if every pair of vertices is in exactly one edge. The famous Brown-Erdős-Sós conjecture states that for every fixed (Formula presented.) and (Formula presented.), every linear (Formula presented.) -graph with (Formula presented.) edges contains (Formula presented.) edges spanned by at most (Formula presented.) vertices. As an intermediate step towards this conjecture, Conlon and Nenadov recently suggested to prove its natural Ramsey relaxation. Namely, that for every fixed (Formula presented.), (Formula presented.) and (Formula presented.), in every (Formula presented.) -colouring of a complete linear (Formula presented.) -graph, one can find (Formula presented.) monochromatic edges spanned by at most (Formula presented.) vertices. We prove that this Ramsey version of the conjecture holds under the additional assumption that (Formula presented.), and we show that for (Formula presented.) it holds for all (Formula presented.).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Bulletin of the London Mathematical Society
ISSN
0024-6093
e-ISSN
—
Svazek periodika
53
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
1453-1469
Kód UT WoS článku
000658418500001
EID výsledku v databázi Scopus
2-s2.0-85107351287