Upward Point Set Embeddings of Paths and Trees
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439120" target="_blank" >RIV/00216208:11320/21:10439120 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-68211-8_19" target="_blank" >https://doi.org/10.1007/978-3-030-68211-8_19</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-68211-8_19" target="_blank" >10.1007/978-3-030-68211-8_19</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Upward Point Set Embeddings of Paths and Trees
Popis výsledku v původním jazyce
We study upward planar straight-line embeddings (UPSE) of directed trees on given point sets. The given point set S has size at least the number of vertices in the tree. For the special case where the tree is a path P we show that: (a) If S is one-sided convex, the number of UPSE s equals the number of maximal monotone paths in P. (b) If S is in general position and P is composed by three maximal monotone paths, where the middle path is longer than the other two, then it always admits an UPSE on S. We show that the decision problem of whether there exists an UPSE of a directed tree with n vertices on a fixed point set S of n points is NP-complete, by relaxing the requirements of the previously known result which relied on the presence of cycles in the graph, but instead fixing position of a single vertex. Finally, by allowing extra points, we guarantee that each directed caterpillar on n vertices and with k switches in its backbone admits an UPSE on every set of n2k - 2 points.
Název v anglickém jazyce
Upward Point Set Embeddings of Paths and Trees
Popis výsledku anglicky
We study upward planar straight-line embeddings (UPSE) of directed trees on given point sets. The given point set S has size at least the number of vertices in the tree. For the special case where the tree is a path P we show that: (a) If S is one-sided convex, the number of UPSE s equals the number of maximal monotone paths in P. (b) If S is in general position and P is composed by three maximal monotone paths, where the middle path is longer than the other two, then it always admits an UPSE on S. We show that the decision problem of whether there exists an UPSE of a directed tree with n vertices on a fixed point set S of n points is NP-complete, by relaxing the requirements of the previously known result which relied on the presence of cycles in the graph, but instead fixing position of a single vertex. Finally, by allowing extra points, we guarantee that each directed caterpillar on n vertices and with k switches in its backbone admits an UPSE on every set of n2k - 2 points.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
WALCOM: Algorithms and Computation
ISBN
978-3-030-68210-1
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
13
Strana od-do
234-246
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Neuveden
Místo konání akce
MM
Datum konání akce
28. 2. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—