Efficient computation of expectations under spanning tree distributions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439971" target="_blank" >RIV/00216208:11320/21:10439971 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=p_yiHX-P.q" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=p_yiHX-P.q</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1162/tacl_a_00391" target="_blank" >10.1162/tacl_a_00391</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient computation of expectations under spanning tree distributions
Popis výsledku v původním jazyce
We give a general framework for inference in spanning tree models. We propose unified algorithms for the important cases of first-order expectations and second-order expectations in edge-factored, non-projective spanning-tree models. Our algorithms exploit a fundamental connection between gradients and expectations, which allows us to derive efficient algorithms. These algorithms are easy to implement with or without automatic differentiation software. We motivate the development of our framework with several cautionary tales of previous research, which has developed numerous inefficient algorithms for computing expectations and their gradients. We demonstrate how our framework efficiently computes several quantities with known algorithms, including the expected attachment score, entropy, and generalized expectation criteria. As a bonus, we give algorithms for quantities that are missing in the literature, including the KL divergence. In all cases, our approach matches the efficiency of existing algorithms and, in several cases, reduces the runtime complexity by a factor of the sentence length. We validate the implementation of our framework through runtime experiments. We find our algorithms are up to 15 and 9 times faster than previous algorithms for computing the Shannon entropy and the gradient of the generalized expectation objective, respectively.
Název v anglickém jazyce
Efficient computation of expectations under spanning tree distributions
Popis výsledku anglicky
We give a general framework for inference in spanning tree models. We propose unified algorithms for the important cases of first-order expectations and second-order expectations in edge-factored, non-projective spanning-tree models. Our algorithms exploit a fundamental connection between gradients and expectations, which allows us to derive efficient algorithms. These algorithms are easy to implement with or without automatic differentiation software. We motivate the development of our framework with several cautionary tales of previous research, which has developed numerous inefficient algorithms for computing expectations and their gradients. We demonstrate how our framework efficiently computes several quantities with known algorithms, including the expected attachment score, entropy, and generalized expectation criteria. As a bonus, we give algorithms for quantities that are missing in the literature, including the KL divergence. In all cases, our approach matches the efficiency of existing algorithms and, in several cases, reduces the runtime complexity by a factor of the sentence length. We validate the implementation of our framework through runtime experiments. We find our algorithms are up to 15 and 9 times faster than previous algorithms for computing the Shannon entropy and the gradient of the generalized expectation objective, respectively.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Transactions of the Association for Computational Linguistics
ISSN
2307-387X
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
01.02.2021
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
675-690
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85119667919