Automated assessment of learner text complexity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441575" target="_blank" >RIV/00216208:11320/21:10441575 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=hyKw8Rj.Wk" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=hyKw8Rj.Wk</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.asw.2021.100529" target="_blank" >10.1016/j.asw.2021.100529</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automated assessment of learner text complexity
Popis výsledku v původním jazyce
EFL methodology has always recognized the importance of giving student learners of foreign languages regular and quick feedback on student production, both written and oral. The presented paper describes the decisions taken during the development of an application to measure text complexity, and shows how the results achieved with this application were translated into feedback related to the author's language proficiency. Along with some standard text complexity features, this tool takes into account those that are significant for Russian learners of English. The application provides students with the statistics of the relevant linguistic features of the text in comparison with texts of the learner essays that were considered the top and the bottom levels in the learner corpus. The paper also points out what text features are especially relevant for the assessment of the essays written in English by Russian students. The choice was made possible after the analysis of 3440 texts from Russian Error-Annotated English Learner Corpus, and after applying methods of machine learning and statistical analysis to predict the grade that could be received for the essay.
Název v anglickém jazyce
Automated assessment of learner text complexity
Popis výsledku anglicky
EFL methodology has always recognized the importance of giving student learners of foreign languages regular and quick feedback on student production, both written and oral. The presented paper describes the decisions taken during the development of an application to measure text complexity, and shows how the results achieved with this application were translated into feedback related to the author's language proficiency. Along with some standard text complexity features, this tool takes into account those that are significant for Russian learners of English. The application provides students with the statistics of the relevant linguistic features of the text in comparison with texts of the learner essays that were considered the top and the bottom levels in the learner corpus. The paper also points out what text features are especially relevant for the assessment of the essays written in English by Russian students. The choice was made possible after the analysis of 3440 texts from Russian Error-Annotated English Learner Corpus, and after applying methods of machine learning and statistical analysis to predict the grade that could be received for the essay.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Assessing Writing
ISSN
1075-2935
e-ISSN
1873-5916
Svazek periodika
49
Číslo periodika v rámci svazku
červenec 2021
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
16
Strana od-do
100529
Kód UT WoS článku
000671850600002
EID výsledku v databázi Scopus
2-s2.0-85105042026