Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Climbing the Tower of Treebanks: Improving Low-Resource Dependency Parsing via Hierarchical Source Selection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441731" target="_blank" >RIV/00216208:11320/21:10441731 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Climbing the Tower of Treebanks: Improving Low-Resource Dependency Parsing via Hierarchical Source Selection

  • Popis výsledku v původním jazyce

    Recent work on multilingual dependency parsing focused on developing highly multilingual parsers that can be applied to a wide range of low-resource languages. In this work, we substantially outperform such &quot;one model to rule them all&quot; approach with a heuristic selection of languages and treebanks on which to train the parser for a specific target language. Our approach, dubbed TOWER, first hierarchically clusters all Universal Dependencies languages based on their mutual syntactic similarity computed from human-coded URIEL vectors. For each low-resource target language, we then climb this language hierarchy starting from the leaf node of that language and heuristically choose the hierarchy level at which to collect training treebanks. This treebank selection heuristic is based on: (i) the aggregate size of all treebanks subsumed by the hierarchy level and (ii) the similarity of the languages in the training sample with the target language. For languages without development treebanks, we additionally use (ii) for model selection (i.e., early stopping) in order to prevent overfitting to development treebanks of closest languages. Our TOWER approach shows substantial gains for low-resource languages over two state-of-the-art multilingual parsers, with more than 20 LAS point gains for some of those languages. Parsing models and code available at: https://github.com/codogogo/towerparse.

  • Název v anglickém jazyce

    Climbing the Tower of Treebanks: Improving Low-Resource Dependency Parsing via Hierarchical Source Selection

  • Popis výsledku anglicky

    Recent work on multilingual dependency parsing focused on developing highly multilingual parsers that can be applied to a wide range of low-resource languages. In this work, we substantially outperform such &quot;one model to rule them all&quot; approach with a heuristic selection of languages and treebanks on which to train the parser for a specific target language. Our approach, dubbed TOWER, first hierarchically clusters all Universal Dependencies languages based on their mutual syntactic similarity computed from human-coded URIEL vectors. For each low-resource target language, we then climb this language hierarchy starting from the leaf node of that language and heuristically choose the hierarchy level at which to collect training treebanks. This treebank selection heuristic is based on: (i) the aggregate size of all treebanks subsumed by the hierarchy level and (ii) the similarity of the languages in the training sample with the target language. For languages without development treebanks, we additionally use (ii) for model selection (i.e., early stopping) in order to prevent overfitting to development treebanks of closest languages. Our TOWER approach shows substantial gains for low-resource languages over two state-of-the-art multilingual parsers, with more than 20 LAS point gains for some of those languages. Parsing models and code available at: https://github.com/codogogo/towerparse.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

  • ISBN

    978-1-954085-54-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    11

  • Strana od-do

    4878-4888

  • Název nakladatele

    Association for Computational Linguistics

  • Místo vydání

    Stroudsburg

  • Místo konání akce

    online

  • Datum konání akce

    1. 8. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku