Climbing the Tower of Treebanks: Improving Low-Resource Dependency Parsing via Hierarchical Source Selection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441731" target="_blank" >RIV/00216208:11320/21:10441731 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Climbing the Tower of Treebanks: Improving Low-Resource Dependency Parsing via Hierarchical Source Selection
Popis výsledku v původním jazyce
Recent work on multilingual dependency parsing focused on developing highly multilingual parsers that can be applied to a wide range of low-resource languages. In this work, we substantially outperform such "one model to rule them all" approach with a heuristic selection of languages and treebanks on which to train the parser for a specific target language. Our approach, dubbed TOWER, first hierarchically clusters all Universal Dependencies languages based on their mutual syntactic similarity computed from human-coded URIEL vectors. For each low-resource target language, we then climb this language hierarchy starting from the leaf node of that language and heuristically choose the hierarchy level at which to collect training treebanks. This treebank selection heuristic is based on: (i) the aggregate size of all treebanks subsumed by the hierarchy level and (ii) the similarity of the languages in the training sample with the target language. For languages without development treebanks, we additionally use (ii) for model selection (i.e., early stopping) in order to prevent overfitting to development treebanks of closest languages. Our TOWER approach shows substantial gains for low-resource languages over two state-of-the-art multilingual parsers, with more than 20 LAS point gains for some of those languages. Parsing models and code available at: https://github.com/codogogo/towerparse.
Název v anglickém jazyce
Climbing the Tower of Treebanks: Improving Low-Resource Dependency Parsing via Hierarchical Source Selection
Popis výsledku anglicky
Recent work on multilingual dependency parsing focused on developing highly multilingual parsers that can be applied to a wide range of low-resource languages. In this work, we substantially outperform such "one model to rule them all" approach with a heuristic selection of languages and treebanks on which to train the parser for a specific target language. Our approach, dubbed TOWER, first hierarchically clusters all Universal Dependencies languages based on their mutual syntactic similarity computed from human-coded URIEL vectors. For each low-resource target language, we then climb this language hierarchy starting from the leaf node of that language and heuristically choose the hierarchy level at which to collect training treebanks. This treebank selection heuristic is based on: (i) the aggregate size of all treebanks subsumed by the hierarchy level and (ii) the similarity of the languages in the training sample with the target language. For languages without development treebanks, we additionally use (ii) for model selection (i.e., early stopping) in order to prevent overfitting to development treebanks of closest languages. Our TOWER approach shows substantial gains for low-resource languages over two state-of-the-art multilingual parsers, with more than 20 LAS point gains for some of those languages. Parsing models and code available at: https://github.com/codogogo/towerparse.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021
ISBN
978-1-954085-54-1
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
4878-4888
Název nakladatele
Association for Computational Linguistics
Místo vydání
Stroudsburg
Místo konání akce
online
Datum konání akce
1. 8. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—