Can central bank speeches predict financial market turbulence? Evidence from an adaptive NLP sentiment index analysis using XGBoost machine learning technique
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441759" target="_blank" >RIV/00216208:11320/21:10441759 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-HRnpoZ4br" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-HRnpoZ4br</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cbrev.2021.12.002" target="_blank" >10.1016/j.cbrev.2021.12.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Can central bank speeches predict financial market turbulence? Evidence from an adaptive NLP sentiment index analysis using XGBoost machine learning technique
Popis výsledku v původním jazyce
Central Bank speeches usually function as aggregators of internal quantitative and qualitative analysis of the institutions regarding the macro economy, the monetary policy and the health of the financial systems. Speeches usually function as a summary of the current status of a countries economic health, the undergoing trends and some future perspectives of the global economy. In this study departing from classical econometrics we employ natural language processing technologies in combination with machine learning techniques in order to filter out the most important signals in the corpus of speeches and translate into a sentiment index for forecasting the future financial markets behaviour. In our analysis, it is evident that central banker's expectations on economy tend to exhibit a predictive ability for financial markets turmoil. Using a combination of dictionaries which are either predefined or build based on historical speeches of the corpus we train an Extreme Gradient Boosting model that generates a sentiment index which signals turmoil with acceptable accuracy when passing a specific threshold.
Název v anglickém jazyce
Can central bank speeches predict financial market turbulence? Evidence from an adaptive NLP sentiment index analysis using XGBoost machine learning technique
Popis výsledku anglicky
Central Bank speeches usually function as aggregators of internal quantitative and qualitative analysis of the institutions regarding the macro economy, the monetary policy and the health of the financial systems. Speeches usually function as a summary of the current status of a countries economic health, the undergoing trends and some future perspectives of the global economy. In this study departing from classical econometrics we employ natural language processing technologies in combination with machine learning techniques in order to filter out the most important signals in the corpus of speeches and translate into a sentiment index for forecasting the future financial markets behaviour. In our analysis, it is evident that central banker's expectations on economy tend to exhibit a predictive ability for financial markets turmoil. Using a combination of dictionaries which are either predefined or build based on historical speeches of the corpus we train an Extreme Gradient Boosting model that generates a sentiment index which signals turmoil with acceptable accuracy when passing a specific threshold.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Central Bank Review
ISSN
1303-0701
e-ISSN
1305-8800
Svazek periodika
21
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
TR - Turecká republika
Počet stran výsledku
13
Strana od-do
141-153
Kód UT WoS článku
000756700800003
EID výsledku v databázi Scopus
2-s2.0-85121267850