Unveiling the sentiment behind central bank narratives: A novel deep learning index
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3ADIW4GPHP" target="_blank" >RIV/00216208:11320/23:DIW4GPHP - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85153590473&doi=10.1016%2fj.jbef.2023.100809&partnerID=40&md5=2ed9eb622bb72cddb6fb2b947504d0bb" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85153590473&doi=10.1016%2fj.jbef.2023.100809&partnerID=40&md5=2ed9eb622bb72cddb6fb2b947504d0bb</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jbef.2023.100809" target="_blank" >10.1016/j.jbef.2023.100809</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unveiling the sentiment behind central bank narratives: A novel deep learning index
Popis výsledku v původním jazyce
"This paper proposes a new framework for analyzing the sentiments of central bank narratives. Specifically, we fine-tune a pre-trained BERT model on a dataset of manually annotated sentences on monetary policy stance. We derive a deep learning domain-specific model—BERT central bank sentiment index—ready for sentiment predictions. The proposed index performs similarly to other measures in capturing financial uncertainty. Also, the sentiment index is less noisy and has the ability to forecast the future path of policy stance, augmenting the standard Taylor rule. Finally, compared to other lexicon-based sentiment indicators, our deep learning index has a higher predictive power in anticipating policy rates changes. Our framework enables future possible research in developing more accurate sentiment indicators for central banks in both advanced and emerging countries. © 2023 Elsevier B.V."
Název v anglickém jazyce
Unveiling the sentiment behind central bank narratives: A novel deep learning index
Popis výsledku anglicky
"This paper proposes a new framework for analyzing the sentiments of central bank narratives. Specifically, we fine-tune a pre-trained BERT model on a dataset of manually annotated sentences on monetary policy stance. We derive a deep learning domain-specific model—BERT central bank sentiment index—ready for sentiment predictions. The proposed index performs similarly to other measures in capturing financial uncertainty. Also, the sentiment index is less noisy and has the ability to forecast the future path of policy stance, augmenting the standard Taylor rule. Finally, compared to other lexicon-based sentiment indicators, our deep learning index has a higher predictive power in anticipating policy rates changes. Our framework enables future possible research in developing more accurate sentiment indicators for central banks in both advanced and emerging countries. © 2023 Elsevier B.V."
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
"Journal of Behavioral and Experimental Finance"
ISSN
2214-6350
e-ISSN
—
Svazek periodika
38
Číslo periodika v rámci svazku
2023
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85153590473