Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Holes and islands in random point sets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10436868" target="_blank" >RIV/00216208:11320/22:10436868 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=I0Z54R1w__" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=I0Z54R1w__</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/rsa.21037" target="_blank" >10.1002/rsa.21037</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Holes and islands in random point sets

  • Popis výsledku v původním jazyce

    For (Formula presented.), let S be a set of points in (Formula presented.) in general position. A set I of k points from S is a k-island in S if the convex hull (Formula presented.) of I satisfies (Formula presented.). A k-island in S in convex position is a k-hole in S. For (Formula presented.) and a convex body (Formula presented.) of volume 1, let S be a set of n points chosen uniformly and independently at random from K. We show that the expected number of k-holes in S is in (Formula presented.). Our estimate improves and generalizes all previous bounds. In particular, we estimate the expected number of empty simplices in S by (Formula presented.). This is tight in the plane up to a lower-order term. Our method gives an asymptotically tight upper bound (Formula presented.) even in the much more general setting, where we estimate the expected number of k-islands in S.

  • Název v anglickém jazyce

    Holes and islands in random point sets

  • Popis výsledku anglicky

    For (Formula presented.), let S be a set of points in (Formula presented.) in general position. A set I of k points from S is a k-island in S if the convex hull (Formula presented.) of I satisfies (Formula presented.). A k-island in S in convex position is a k-hole in S. For (Formula presented.) and a convex body (Formula presented.) of volume 1, let S be a set of n points chosen uniformly and independently at random from K. We show that the expected number of k-holes in S is in (Formula presented.). Our estimate improves and generalizes all previous bounds. In particular, we estimate the expected number of empty simplices in S by (Formula presented.). This is tight in the plane up to a lower-order term. Our method gives an asymptotically tight upper bound (Formula presented.) even in the much more general setting, where we estimate the expected number of k-islands in S.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-19158S" target="_blank" >GA18-19158S: Algoritmické, strukturální a složitostní aspekty geometrických a dalších konfigurací</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Random Structures and Algorithms

  • ISSN

    1042-9832

  • e-ISSN

  • Svazek periodika

    60

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    19

  • Strana od-do

    308-326

  • Kód UT WoS článku

    000671793500001

  • EID výsledku v databázi Scopus

    2-s2.0-85109417804