SUPERVISED NONPARAMETRIC CLASSIFICATION IN THE CONTEXT OF REPLICATED POINT PATTERNS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10447848" target="_blank" >RIV/00216208:11320/22:10447848 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=AQ0SX49DqO" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=AQ0SX49DqO</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5566/ias.2652" target="_blank" >10.5566/ias.2652</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SUPERVISED NONPARAMETRIC CLASSIFICATION IN THE CONTEXT OF REPLICATED POINT PATTERNS
Popis výsledku v původním jazyce
A spatial point pattern is a collection of points in space, representing, e.g. observed locations of trees, bird nests, centers of cells in a histological sample, etc. When several independent realizations of the underlying stochastic process are observed, these realizations are referred to as replicated point patterns. The main objective of this paper is to classify a newly observed pattern into one of the existing classes using a supervised nonparametric classification method, namely the Bayes classifier in combination with the k-nearest neighbors algorithms and the kernel regression method. The dissimilarity between a pair of patterns is defined using the functional summaries extracted from the point patterns via the Cramer-von Mises or Kolmogorov-Smirnov type formula. A set of simulation experiments is presented to investigate the performance of the proposed classifier with a dissimilarity measure based on functional summaries, such as the pair correlation function. The application of such a classifier to a real point pattern dataset is also illustrated.
Název v anglickém jazyce
SUPERVISED NONPARAMETRIC CLASSIFICATION IN THE CONTEXT OF REPLICATED POINT PATTERNS
Popis výsledku anglicky
A spatial point pattern is a collection of points in space, representing, e.g. observed locations of trees, bird nests, centers of cells in a histological sample, etc. When several independent realizations of the underlying stochastic process are observed, these realizations are referred to as replicated point patterns. The main objective of this paper is to classify a newly observed pattern into one of the existing classes using a supervised nonparametric classification method, namely the Bayes classifier in combination with the k-nearest neighbors algorithms and the kernel regression method. The dissimilarity between a pair of patterns is defined using the functional summaries extracted from the point patterns via the Cramer-von Mises or Kolmogorov-Smirnov type formula. A set of simulation experiments is presented to investigate the performance of the proposed classifier with a dissimilarity measure based on functional summaries, such as the pair correlation function. The application of such a classifier to a real point pattern dataset is also illustrated.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-04412S" target="_blank" >GA19-04412S: Nové přístupy k modelování a statistice náhodných množin</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Image Analysis and Stereology
ISSN
1580-3139
e-ISSN
—
Svazek periodika
41
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
SI - Slovinská republika
Počet stran výsledku
18
Strana od-do
57-74
Kód UT WoS článku
000824607400001
EID výsledku v databázi Scopus
—