Supervised classification via neural networks for replicated point patterns
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10468865" target="_blank" >RIV/00216208:11320/23:10468865 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-09034-9_32" target="_blank" >https://doi.org/10.1007/978-3-031-09034-9_32</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-09034-9_32" target="_blank" >10.1007/978-3-031-09034-9_32</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Supervised classification via neural networks for replicated point patterns
Popis výsledku v původním jazyce
A spatial point pattern is a collection of points observed in a bounded region of R^d, d <= 2. Individual points represent, e.g., observed locations of cell nuclei in~a~tissue (d = 2) or centers of undesirable air bubbles in industrial materials (d = 3). The main goal of this paper is to show the possibility of solving the supervised classification task for point patterns via neural networks with general input space. To predict the class membership for a newly observed pattern, we compute an empirical estimate of a selected functional characteristic (e. g., the pair correlation function). Then, we consider this estimated function to be a functional variable that enters the input layer of the network. A short simulation example illustrates the performance of the proposed classifier in the situation where the observed patterns are generated from two models with different spatial interactions. In addition, the proposed classifier is compared with convolutional neural networks (with point patterns represented by binary images) and kernel regression. We consider the kernel regression classifiers for point patterns a benchmark in this setting.
Název v anglickém jazyce
Supervised classification via neural networks for replicated point patterns
Popis výsledku anglicky
A spatial point pattern is a collection of points observed in a bounded region of R^d, d <= 2. Individual points represent, e.g., observed locations of cell nuclei in~a~tissue (d = 2) or centers of undesirable air bubbles in industrial materials (d = 3). The main goal of this paper is to show the possibility of solving the supervised classification task for point patterns via neural networks with general input space. To predict the class membership for a newly observed pattern, we compute an empirical estimate of a selected functional characteristic (e. g., the pair correlation function). Then, we consider this estimated function to be a functional variable that enters the input layer of the network. A short simulation example illustrates the performance of the proposed classifier in the situation where the observed patterns are generated from two models with different spatial interactions. In addition, the proposed classifier is compared with convolutional neural networks (with point patterns represented by binary images) and kernel regression. We consider the kernel regression classifiers for point patterns a benchmark in this setting.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/EF19_073%2F0016935" target="_blank" >EF19_073/0016935: Grantová schémata na UK</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Classification and Data Science in the Digital Age, Proceedings of the 17th conference of the International Federation of Classification Societies
ISBN
978-3-031-09033-2
ISSN
1431-8814
e-ISSN
2198-3321
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
Springer Cham
Místo vydání
neuveden
Místo konání akce
Porto
Datum konání akce
19. 7. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—